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Abstract Based on our proposed regularized multiple criteria linear programming (RMCLP) for
binary classification problems, this paper extends this method to treat with nonlinear case. By ap-
plying dual theory, we derived the dual problem of optimization problem constructed in RMCLP,
and then proved the solution of RMCLP can be computed by the solution of its dual problem, fi-
nally, we constructed Algorithm Kernel RMCLP by introducing Kernel functions in RMCLP. A
series of experimental tests are conducted to illustrate the performance of the proposed Kernel RM-
CLP with the outstanding support vector machine (SVM). The results of several publicly available
datasets and a real-life credit dataset all show that our Kernel RMCLP is a competitive method in
classification.

Keywords multiple criteria linear programming; Regularize; Kernel; support vector machine;
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1 Introduction
For the last decade, the researchers have extensively applied optimization techniques

to deal with problems in data mining or machine learning. Most data mining or machine
learning problems reduce to optimization problems including: unconstrained, quadratic,
linear, second-order cone, semi-definite, and semi-infinite convex programs. The research
area of mathematical programming intersects with data mining or machine learning in
two aspects: On one hand, mathematical programming theory supplies a definition of
what constitutes an optimal solution — the optimality conditions. On the other hand,
mathematical programming algorithms equip data mining or machine learning researchers
with tools for training large families of models[1].

Among all the optimization techniques in data mining, from 1980’s to 1990’s, Glover
proposed a number of linear programming models to solve discriminant problems with
a small sample size of data[2, 3]. Then, since 1998 Shi and his colleagues extended
such a research idea into classification via multiple criteria linear programming (MCLP)
and multiple criteria quadratic programming (MCQP), which differ from statistics, de-
cision tree induction, and neural networks[4]− [8]. These mathematical programming
approaches to classification have been applied to handle many realworld data mining
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problems, such as credit card portfolio management[9, 10], bioinformatics [11, 12], fraud
management[13], information intrusion and detection[14, 15], firm bankruptcy[16], etc.

In order to overcome some shortcoming of the MCLP models, we proposed regu-
larized multiple criteria linear programming (RMCLP) with existence of solution for
classification[17]. Numerical experiments have proved our Algorithm RMCLP’s effi-
ciency. However, RMCLP can only deal with linear classification problem which strongly
restrict its application. Following the idea of SVM[18, 19], we will extend it to nonlinear
case by introducing the kernel functions. That is the motivation of this paper.

Rest of the paper proceeds as follows. Section 2 introduces the basic notions and for-
mulation of RMCLP. Then section 3 describes in detail our proposed Algorithm Kernel
RMCLP (KRMCLP). Section 4 uses a series of experimental tests to illustrate the per-
formance of the proposed KRMCLP with the existing methods: MCLP, MCQP, RMCLP
and SVM. Section 5 gives the conclusions.

2 Primal problem
For a binary classification problem, given a training set

T = {(x1,y1) ⋅ ⋅ ⋅ ,(xl ,yl)} ∈ (Rn ×Y )l , (2.1)

where xi ∈ Rn, and yi ∈ Y = {−1,1}, i = 1, ⋅ ⋅ ⋅ , l. RMCLP[17] constructs the following
problem

min
z

1
2

wTHw+
1
2

uTQu+deTu− ceTv, (2.2)

s.t. (w ⋅ xi)+ui − vi = b, for{i∣yi = 1}, (2.3)
(w ⋅ xi)−ui + vi = b, for{i∣yi =−1}, (2.4)
u,v ≥ 0, (2.5)

where z = (wT,uT,vT,b)T ∈ Rn+l+l+1, H ∈ Rn×n and Q ∈ Rl×l are symmetric positive
definite matrices, and c,d ≥ 0, e ∈ Rl be vectors whose all elements are 1, we call it the
primal problem in this paper. If the solution of primal problem z∗ = (w∗T,u∗T,v∗T,b∗)T

is derived, we can construct the decision function as

f (x) = sgn(g(x)) = sgn((w∗ ⋅ x)−b∗), (2.6)

therefore,c for any unknown input x, its label is deduced by (2.6).
Obviously, Problem (2.2)∼(2.5) is a convex quadratic program and we have proved it

has a bounded solution set if H,Q,d,c are chosen appropriately.
Without loss of generality, suppose inputs x1, ⋅ ⋅ ⋅ ,xl1 belong to positive class, and

inputs xl1+1, ⋅ ⋅ ⋅xl1+l2 belong to negative class, I1 ∈ Rl1×l1 , I2 ∈ Rl2×l2 be identity matrices,

A1 =

⎛
⎜⎝

xT
1
...

xT
l1

⎞
⎟⎠

l1×n

, A2 =

⎛
⎜⎝

xT
l1+1
...

xT
l1+l2

⎞
⎟⎠

l2×n

,

A =

(
A1
A2

)

l×n
, E =

(
I1 0
0 −I2

)

l×l
, (2.7)
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and e ∈ Rl be vectors with all elements 1. In this paper we choose H to be identity matrix,
and add a term 1

2 b2 to the objective function, so the problem (2.2)∼(2.5) turns out to be

min
z

1
2

wTw+
1
2

b2 +
1
2

uTQu+deTu− ceTv, (2.8)

s.t. Aw+Eu−Ev−be = 0, (2.9)
u ≥ 0,v ≥ 0. (2.10)

Because the objective function (2.8) is strictly convex w.r.t (w,b,u), so we have the fol-
lowing theorem[20].

Theorem 1. Solution of problem (2.8)∼(2.10) w.r.t (w,b,u) is unique.

3 Kernel RMCLP
Naturally, we first derive the dual problem of problem (2.8)∼(2.10) by introducing its

Lagrange Function

L(w,u,v,b,α,β ,η) =
1
2

wTw+
1
2

b2 +
1
2

uTQu+deTu− ceTv

+αT(Aw+Eu−Ev−be)−β Tu−ηTv, (3.1)

where α ∈ Rl , and β ≥ 0,η ≥ 0 are the Lagrange multipliers. Therefore the dual problem
of (2.8)∼(2.10) can be formulated as

max
w,u,v,b,α,β ,η

L(w,u,v,b,α,β ,η), (3.2)

s.t. ∇w,u,v,bL(w,u,v,b,α,β ,η) = 0, (3.3)
β ,η ≥ 0. (3.4)

From equation (3.3) we get

∇wL = w+ATα = 0, (3.5)
∇vL = −ce−Eα −η = 0, (3.6)
∇uL = Qu+Eα +de−β = 0, (3.7)
∇bL = b− eTα = 0. (3.8)

Substituting the above equations into problem (3.2)∼(3.4), we will get

max
α,u

−1
2

αT(AAT + eeT)α − 1
2

uTQu, (3.9)

s.t. −Qu−de ≤ Eα ≤−ce. (3.10)

We can find that the inputs xi, i = 1, ⋅ ⋅ ⋅ , l only appear in the term AAT = (xi ⋅x j)l×l , which
means we can introduce the kernel function K(x,x′) = (Φ(x) ⋅Φ(x′)) to take place of
(x ⋅ x′), where Φ(⋅) is a mapping from the input space Rn to some Hilbert space H

Φ :
Rn → H ,
x → Φ(x) , (3.11)
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Therefore, dual problem (3.9)∼(3.10) turns out to be

min
α ,u

1
2

αT(K(A,AT)+ eeT)α +
1
2

uTQu, (3.12)

s.t. −Qu−de ≤ Eα ≤−ce, (3.13)

where K(A,AT) = Φ(A)Φ(A)T = (Φ(xi) ⋅Φ(x j))l×l . Obviously problem (3.12)∼(3.13)
is a convex quadratic problem and always has a solution if the parameters c,d chosen
appropriately.

Theorem 2. Suppose (α∗,u∗) is the solution of dual problem (3.12)∼(3.13), the so-
lution of corresponding primal problem (2.8)∼(2.10) in some Hilbert space H w.r.t
(w,b) = (Φ(w),b) can be computed as follows:

w∗ =−Φ(A)Tα∗ and b∗ = eTα∗. (3.14)

Proof The Lagrange Function of dual problem (3.12)∼(3.13) is

L(α,u, ũ, ṽ) =
1
2

αTK(A,AT)α +
1
2

αTeeTα +
1
2

uTQu

−(Qu+de+Eα)Tũ+(Eα + ce)Tṽ, (3.15)

where ũ ≥ 0, ṽ ≥ 0 are the Lagrange multipliers. The KKT conditions of dual problem is

Qu∗+de+Eα∗ ≥ 0, Eα∗+ c ≤ 0, (3.16)
(Qu∗+de+Eα∗)Tũ = 0, (3.17)

(Eα∗+ ce)Tṽ = 0, (3.18)
K(A,AT)α∗+ eeTα −Eũ+Eṽ = 0, (3.19)

Qu∗−Qũ = 0, (3.20)
ũ, ṽ ≥ 0. (3.21)

It is easy to see that ũ = u∗ from condition (3.20).
Now let

w∗ =−Φ(A)Tα∗, b∗ = eTα∗, (3.22)

then equation (3.19) turns out to be

Φ(A)w∗−b∗e+Eũ−Eṽ = 0, (3.23)

together with (3.21) imply that (w∗, ũ, ṽ,b∗) is the feasible point of primal problem.
Furthermore, from KKT conditions (3.16)∼(3.21) we know that

1
2

w∗Tw∗+
1
2

b∗+
1
2

ũTQũ+deTũ− ceTṽ

=
1
2

α∗T(K(A,AT)+ eeT)α∗+
1
2

ũTQũ+deTũ− ceTṽ

=
1
2

α∗T(K(A,AT)+ eeT)α∗+
1
2

ũTQũ+deTũ− ceTṽ

−(K(A,AT)α∗+ eeTα∗−Eũ+Eṽ)Tα∗

= −1
2

α∗T(K(A,AT)+ eeT)α∗− 1
2

u∗TQu∗, (3.24)
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i.e. the objective value of primal problem at (w∗, ũ, ṽ, b̃) equals to the objective value of
dual problem at (α∗,u∗), so that (w∗, ũ, ṽ, b̃) is the solution of primal problem (2.8)∼(2.10)
in some Hilbert space H [20]. □

Now, based on Theorem 2 we construct the following Algorithm kernel RMCLP:

Algorithm 1.
Algorithm3.1 Algorithm of Kernel RMCLP(KRMCLP)

(1) Given a training set T = {(x1,y1), ...,(xl ,yl)} ∈ (Rn ×{−1,1})l;
(2) Select an appropriate kernel K(⋅, ⋅), symmetric positive definite matrices, Q∈Rl×l ,

c,d ≥ 0;
(3) Solve problem (3.12)∼(3.13) and get the solution α∗;
(4) Construct the decision function as

f (x) = sgn((w∗ ⋅Φ(x))−b∗)

= sgn(−K(A,x)Tα∗− eTα∗), (3.25)

□

Obviously, we can see that when the kernel function K(x,x′) chosen to be linear kernel
(x ⋅ x′), algorithm Kernel RMCLP degenerates from algorithm RMCLP.

4 Numerical Experiments
Because RMCLP is the linear case of KRMCLP when the kernel function chosen to be

linear kernel, so in this section, we will only compare the performance of KRMCLP with
SVM on three publicly available datasets from UCI Machine Learning Repository[21] and

credit card dataset, both algorithms will choose RBF kernel: K(x,x′) = exp(− ∥x−x′∥2

σ ),
where σ > 0.

4.1 UCI datasets
For every UCI dataset, we randomly separate it into two parts, one part is for training,

and the other for testing, then apply the above KRMCLP and SVM to train and test. This
process is performed ten times, every time the scores on training and testing are recorded,
at last the average scores are computed and shown in Table 1—Table 3. Here, we apply
three scores to evaluate two algorithms: sensitivity (Sn), specificity(Sp) and G-Mean(g)

Sn =
T P

T P+FN
, (4.1)

Sp =
T N

T N +FP
, (4.2)

g =
√

Sn×Sp, (4.3)

where T P is true positive, T N is true negative, FP is false positive and FN is false nega-
tive.

In every training, parameters in each algorithm are selected in some discrete set in
order to get the best scores. For example, the parameters in KRMCLP needed to be
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chosen are σ > 0 in RBF kernel, matrix Q, penalty parameters c > 0 and d > 0, so we
choose Q in a set of several given matrixes, σ ,c,d in the sets of several given numbers.
From Table 1 to Table 3 we can see that the performance of RMCLP is almost the same
with SVM or even better than SVM in some scores.

Table 1: Experiments On Australian Dataset
Classification Training (200 records)+Testing (490 records)

Algorithms Sn Sp g Acc Sn Sp g Acc
RMCLP 85.0% 84.0% 84.5% 84.5% 90.3% 80.9% 85.5% 84.9%
SVM — — — 87.0% 93.7% 78.8% 85.9% 85.1%

Table 2: Experiments On German Dataset
Classification Training (200 records)+Testing (800 records)

Algorithms Sn Sp Ac g Sn Sp Ac g
RMCLP 73.0% 57.0% 64.4% 65.0% 76.0% 63.5% 69.5% 66.6%
SVM — — — 69.0% 79.0% 45.9% 60.2% 65.6%

Table 3: Experiments On Heart Dataset
Classification Training (100 records)+Testing (170 records)

Algorithms Sn Sp g Acc Sn Sp g Acc
RMCLP 80.0% 86.0% 82.9% 83.0% 77.1% 73.0% 80.0% 80.6%
SVM — — — 87.0% 77.1% 88.0% 82.4% 83.5%

4.2 Credit Card Dataset
Now we test the performance of KRMCLP on credit card dataset. The 6000 credit

card records used in this paper were selected from 25,000 real-life credit card records of
a major US bank. Each record has 113 columns or variables to describe the cardhold-
ers’ behaviors, including balance, purchases, payment cash advance and so on. With the
accumulated experience functions, we eventually get 65 variables from the original 113
variables to describe the cardholders’ behaviors.

In this paper we chose the holdout method on credit card dataset to separate data into
training set and testing set: first, the bankruptcy dataset (960 records) is divided into 10
intervals (each interval has approximately 100 records). Within each interval, 50 records
are randomly selected. Thus the total of 500 bankruptcy records is obtained after repeating
10 times. Then, with the same way, we get 500 current records from the current dataset.
Finally, the total of 500 bankruptcy records and 500 current records are combined to form
a single training dataset, with the remaining 460 lost records and 4540 current records
merging into a testing dataset. This process is performed for ten times, for each time we
apply KRMCLP to training and testing. In each training, we apply 5-fold cross-validation
to choose best parameters in KRMCLP for testing. At last we recorded the corresponding
average scores for each time in Table 4.
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Table 4: Experiments on Credit Card Dataset
Training Set Testing Set

Sn Sp Ac g Sn Sp Ac g
DS 1 87.50% 60.50% 74.00% 72.75% 90.13% 62.87% 66.57% 75.28%
DS 2 91.50% 64.00% 77.50% 76.46% 90.13% 62.87% 66.57% 75.28%
DS 3 92.00% 60.00% 76.00% 74.22% 90.13% 62.87% 66.57% 75.28%
DS 4 94.00% 67.00% 80.50% 79.34% 90.13% 62.87% 66.57% 75.28%
DS 5 89.00% 62.00% 75.50% 74.16% 90.13% 62.87% 66.57% 75.28%
DS 6 89.00% 63.50% 76.25% 75.04% 90.13% 62.87% 66.57% 75.28%
DS 7 89.00% 57.50% 73.25% 71.38% 90.13% 62.87% 66.57% 75.28%
DS 8 93.50% 63.00% 78.25% 76.68% 90.13% 62.87% 66.57% 75.28%
DS 9 94.00% 64.50% 79.25% 77.66% 90.13% 62.87% 66.57% 75.28%
DS 10 87.00% 63.5% 75.25% 74.20% 90.13% 62.87% 66.57% 75.28%

5 Conclusion
In this paper, a kernel regularized multiple criteria linear program (KRMCLP) has

been proposed for classification problems in data mining. Comparing with the known
multiple criteria linear program (MCLP) model and regularized multiple criteria linear
program RMCLP, this model not only guarantees the existence of solution and mathemat-
ically solvable, but also can deal with nonlinear case, which extend the real application of
MCLP and RMCLP. In addition to describing our algorithm’s effiency, this paper has also
conducted a series of experimental tests on several datasets comparing with the support
vector machine (SVM), all results have shown that KRMCLP is a competitive method in
classification.
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