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Abstract Networks are widely used in the social, physical, and biological sciences as a concise
representation of the topology of systems. In order to understand the structure of these networks,
it can be helpful to decompose the network into communities. In this paper, we propose a linear
projection approach for detecting community structure by transforming network community detec-
tion problem into a low-dimension vector clustering problem. Furthermore, the optimal number of
communities can be inferred by using the gap statistic idea, if no prior information is provided.
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1 Introduction
In the last few years, complex networks have been studied extensively due to their rel-

evance to many real systems such as the world-wide web, the Internet, the traffic network,
social and biological networks [1]. So far, A few interesting properties have been identi-
fied in these networks, such as small world phenomenon[2] and power law distribution[3].
Recently, many considerable interests focus on another property called community struc-
ture property[4], which refers to the occurrence of groups of nodes in a network that are
more densely connected internally than with the rest of the network.

A variety of methods[5, 6]have been developed to detect communities. And for evalu-
ating the goodness of community structure, the modularity measure is proposed[5], which
works very well in networks with balanced structure. Afterwards, many researchers pro-
pose their algorithms by using modularity as the quality function [7, 8, 9]. But unfortu-
nately, it fails to work for unbalanced networks [10]. While, the information based method
[11], the mixture model [12], the SPAEM [13], can partly solve this scale problem.

Intuitively, the community is similar to the cluster. In the data mining field, a cluster
usually refers to a set of closely located vectors. Now, what is the relationship between
network communities and vector clusters? A spectral clustering method [7] is proposed
to find this kind of relationship, which first computes the embedding of the graph into
a Euclidean space and then clusters these vectors by applying K-means clustering algo-
rithm. However, this algorithm also uses modularity as the quality function to choose the
optimal number of clusters.
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In this paper, we introduce a new way to transform network community detection
problem into a common clustering problem, which turns out to work very well on both
well known networks and simulating networks even if networks are embedded into a
relative low dimension Euclidean space. And by using the idea of gap statistic, which
is quite different from modularity function, the optimal number of communities can be
inferred, if there is no prior knowledge about it.

2 Method
Our goal is to detect community structure of networks of which adjacent matrix A are

given, where Ai j = 1 means an edge from node i to node j. The general framework of
our model is following: first, calculate a similarity measure X between every node pair;
second, do vectorization of the network by using linear projection method so that each
node is represented by a vector; third, find clusters in these vectors by applying clustering
algorithm, if the number of communities is predetermined. And then transform each
cluster back to a node set, which is the final community detected; fourth, infer the optimal
number of communities by using the gap statistic idea, if there is no information about it.
The detail of the framework will be explained in the next few subsections.

2.1 Similarity matrix calculating
This step serves as a preliminary preparation. All algorithms which define similar-

ity can be incorporated here, such as the shortest path similarity matrix or diffusion
kernel. Different algorithms may impact the final results. Surprisingly, an interesting
phenomenon happens in our linear projection method which dose not seem to be very
sensitive to the choice of similarity matrix. This will be illustrated in the result section.

2.2 Vectorization by using Linear Projection Method
Given the similarity matrix X , the goal of vectorization is to represent each node by a

p dimensional vector which maintains the similarity measure as much as possible. Here,
treat every column of X as a variable, and every row as an observation. Then there are n
observations {xi, i = 1,2, ...,n}.

Consider the following optimization problem:

(MP)
minµ,{λi},Vp f (x) = ∑n

i=1 ∥xi −µ −λiV T
p ∥2

s.t. V T
p Vp = I,

(1)

Here, both µ and λi are 1× p vectors, Vp is a n× p matrix. By setting the derivatives
of f (x) in Eq(1) to be zero, then

µ̂ = x− ∑n
i=1 λ̂iV T

p
n (2)

λ̂i = (xi − µ̂)Vp (3)

and by substituting µ̂ in Eq(2) into Eq(3),

λ̂i = (xi − x)Vp +
∑n

i=1 λ̂i

n
(4)

338 The 3rd International Symposium on Optimization and Systems Biology



This leaves us to find the orthogonal matrix Vp to the following optimization problem:

min
µ,{λi},Vp

f (x) =
n

∑
i=1

∥xi − x− (xi − x)VpV T
p ∥2

(5)

It is clearly that the optimal V̂p takes first p principle component directions as columns.
Therefore the solution to Eq(5) can be expressed as follows. First of all, stack the (cen-
tered) observations(x̃i = xi − x) into the rows of an n× p matrix X̃ , and then construct the
singular value decomposition of X̃ :

X̃ =UDV T (6)

Here, D is a n× n diagonal matrix, with diagonal elements d11 ≥ d22 ≥ ... ≥ dnn ≥ 0.
Without much effort, it can be proven that the first p columns of V is exactly V̂p, the
solution to Eq(5).

The vectors {(xi − x)V̂p, i = 1, ...,n} are the optimal projection of centered observa-
tions (x̃i = xi − x) to the vector space spanned by the base {v1, ...,vp}, where vi is the ith
column of V̂p.

Our projection idea is based on Principle Component Analysis(PCA). As we know,
PCA can be used for dimensionality reduction in a data set by keeping lower-order princi-
pal components and ignoring higher-order ones, which retain those characteristics of the
data set that contribute most to its variance. Such low-order components often contain the
“most important” aspects of the data. However, depending on the application this may
not always be true. Fortunately, PCA turns out to be suitable for resolving community
structure.

2.3 Clustering
After vectorization of the network, each node i is represented by a p-dimension vector

η̂i = (xi − x)V̂p = (ui1d11,ui2d22, ...,uipdpp) (7)

and proportion of variance accounted for is

rp =
∑p

i=1 d2
ii

∑n
i=1 d2

ii
(8)

To detect community structure, we only need to cluster these n vectors {η̂1, η̂2, ..., η̂n}
by applying clustering algorithm, such as K-means clustering algorithm or hierarchical
clustering algorithm, if a predetermined number of clusters is given. In this paper, K-
means clustering algorithm is employed.

2.4 Model selection
The K-means clustering algorithm needs a predetermined number of clusters. In fact,

there are a lot of methods for estimating the number of clusters[15, 16], besides the mod-
ularity method[5]. However, whether these methods are suitable for our projection idea
is still unknown. Fortunately, the gap statistic idea turns out to be appropriate to infer the
optimal number of clusters[16], which works very well when combining with the shortest
path similarity matrix.
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Gap statistic
Step 1: Cluster the n vectors, varying the total number k of clusters from 2 to K,
giving within-cluster measure Wk
Step 2: Generate B reference data sets, and cluster each one giving within-cluster
measures Wkb,b = 1,2, ...,B,k = 2, ..,K. Compute the gap statistic

Gap(k) = (1/B)∑
b

log(Wkb)− log(Wk)

Step 3: Let ew = (1/B)∑b log(Wkb), compute the standard deviation

sdk = [(1/B)∑
b
{log(Wkb)− ew}2]1/2

and define sk = sdk
√

1+1/B
Step 4: Choose the number of clusters via

k̂= smallest k such that Gap(k)≥ Gap(k+1)− sk+1

2.5 Linear Projection Algorithm(LPA)
Now we can describe our algorithm as follows:

Input: Adjacent matrix A

1. Calculate similarity matrix X
2. Choose a suitable dimension p, and calculate projection vectors

{η̂1, η̂2, ..., η̂n}
3. If the number of communities is predetermined, clustering {η̂1, η̂2, ..., η̂n}

by applying K-means clustering algorithm, and then transform each cluster
back to a node set, which is the final community detected

4. Infer the optimal number of communities k by using the gap statistic idea,
if there is no information about it

Output: Communities A1,A2, ...,Ak

3 Results
3.1 Experiment

First, test LPA on some classical networks, using the shortest path similarity matrix.

3.1.1 Zachary Club
Zachary club network is based on acquaintance relationship between 34 members of a

Karate club. The club splits into two parts due to an internal disputation, so it has natural
community structure.

Here, test p from 1 to 34. When p = 2, the Scatter is shown in FIG. 1. Clearly,
the 2 dimension vectors have obvious clusters. When p is bigger than 2, the original
community structure can always be identified, see FIG. 2. Zachary club is divided into
two communities(nodes with different shapes). Actually, the proportion rp increases as
p increases. Therefore, more information have been maintained after projection, which
benefits the detecting community process. This result shows that LPA is suitable for
detecting community, even if p is very small.
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Figure 1: scatter: p=2. The projection vec-
tors have obvious clusters(nodes with dif-
ferent shapes), and the square nodes denote
two cluster centers

Figure 2: Zachary club: p=2, r=0.41.

3.2 Comparison
3.2.1 Dolphin Social Network

Dolphin social network reported by Lusseau [17] provides a natural example where
communities vary in size. The original two subdivisions have different sizes, with one
community 22 dolphins and the other 40. When p ≥ 1, the result of LPA does not change,
as shown by the left line in the FIG. 3. LPA outperforms the modularity method in this
example, with only one node “SN89” misclassified.
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Figure 3: p=1, r=0.34. Nodes with different shapes denote the original partition. The left
line is the split line by LPA, the right line is the split line by the modularity method[9].
LPA misclassifies only one node “SN89”.

3.2.2 Simulating Network
Consider symmetric, node asymmetric, link asymmetric three cases as mentioned in

[11]. In the symmetric test, each network is composed of 4 communities with 32 nodes,
and each node have an average degree of 16. kout is the average number of edges linking
to nodes in different communities, and set kout = 6,7,8. In the node asymmetric test, each
network is composed of 2 communities with 96 and 32 nodes respectively, and kout is set
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Test kout SP DK Info Modu Mixture SPAEM Spec
Symmetric 6 0.99 0.99 0.99 0.99 0.92 0.99 0.99

7 0.95 0.96 0.97 0.97 0.81 0.95 0.95
8 0.85 0.84 0.87 0.89 0.64 0.84 0.81

Link asymmetric 2 1.00 1.00 1.00 1.00 0.99 0.98 0.97
3 1.00 0.99 1.00 0.96 0.94 0.94 0.88
4 0.99 0.96 1.00 0.74 0.70 0.84 0.84

Node asymmetric 6 0.98 0.99 0.99 0.85 0.97 0.97 0.99
7 0.94 0.95 0.96 0.80 0.92 0.92 0.95
8 0.81 0.81 0.82 0.74 0.74 0.79 0.82

Table 1: Results for three simulation tests: Symmetric, Link Asymmetric and Node
Asymmetric. SP and DK denote our projection method by using different similarity ma-
trix when p is set to be 10. Other methods are as follows: the information based method
[11], the modularity method [8], the mixture model [12], the SPAEM [13], the Spectral
Clustering method [7]

same as the above case. In the link asymmetric test, 2 communities with 64 nodes each
differ in their average degree sequence. Nodes in one community have average 24 edges
while nodes in the other community have only 8 edges, kout = 2,3,4.

The result is shown in the TABLE. 1. LPA outperforms almost all methods except the
information based method[11]. Although the accuracy of our algorithm is 1 or 2 percent
lower on average, LPA is still comparable to the information based method, as we choose
p to be 10 which is much smaller than the number of nodes. And more interesting thing
is that both SP and Dk work very well, so it is reasonable to conclude that LPA is not very
sensitive to the choice of similarity matrix.

3.3 Model Selection: how to choose the optimal number c
A major challenge in detecting community is the estimation of the optimal number of

communities. In this section, we test whether the gap statistic idea is suitable for it.

3.3.1 Journal Citation Network
The Journal Citation Network has four different kinds of journals(Physics, Chemistry,

Biology, Ecology), clearly, the optimal number of communities is four. Next, use gap
statistic idea to choose the number of communities.

When p ≥ 3, the optimal number four is always obtained. The results for p = 3,10 are
shown in FIG. 4 and FIG. 5. In turn, the results confirm that gap statistic idea is suitable
for inferring the optimal number of communities.

3.3.2 American Football League
In American Football League, the nodes represent the 115 teams, while the links

represent 613 games played. The teams are divided into 12 conferences.
The result is shown in the TABLE. 2. When p ≥ 35, the community number 11 is

always obtained. The result seems to be wrong since there should be 12 communities.
However, there is one community which in fact is not a community because mostly it
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Figure 4: p=3. rp = 0.55
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Figure 5: p=10

Test p = 15 p = 25 p = 30 p = 35 p = 40 p = 45
rp 0.78 0.87 0.89 0.92 0.94 0.95
Community number k 12 12 12 11 11 11

Table 2: Test on different p

plays games with adjacent communities. So according to the definition of community,
it may be more sensible to divide the American Football League into 11 communities.
Therefore our result about the optimal number does make sense.

3.4 How to choose p
Besides estimation of the optimal number of communities, there is another issue need

to be concerned about LPA, how to choose a appropriate dimension p. There have been a
few traditional methods about how to choose p, such as the eigenvalue-one criterion, the
scree test, proportion of variance accounted for, the interpretability criterion. Here, the
proportion method is used, as shown in Eq(8).

The goal of mapping vectors is to extract the main structure while excluding noisy
information from the original similarity matrix X . To get good mapping, an equilibrium
between the two aspects should be reached, in other words, rp should be set to be in a
reasonable value range to determine p. Empirically, setting rp ≥ 0.5 can capture the main
structure of the network, if the number of community is known. On the other hand, if no
information about the network is obtained, rp ≥ 0.9 is enough. All our test results support
the above two criterions.

4 Conclusion
In this paper, we come up with a linear projection algorithm(LPA) for resolving com-

munity structure by transforming network community detection problem into a common
clustering problem. The results show that it works very well on the test sets, even if p is
very small. So it is reasonable to conclude that the main features of the community struc-
ture are actually captured by just the low-dimension vectors, which allows us to reduce
the computational cost.
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