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Abstract The inverse problems play an important role in MEG reconstructions [3, 4, 5, 6, 7]. In
this paper, a partially described inverse eigenvalue problem and an associated optimal approxima-
tion problem for J-centrosymmetric matrices are considered respectively. It is shown under which
conditions the inverse eigenproblem has a solution. An expression of its general solution is given.
In case a solution of the inverse eigenproblem exists, the optimal approximation problem can be
solved. The formula of its unique solution is given. Also, the case for J-skew centrosymmetric
matrices is considered.
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1 Introduction
A matrix A ∈ℂ2m×2m is said to be: J-centrosymmetric if AJ = JA; J-skew centrosym-

metric if AJ =−JA, where J =

[
0 I
−I 0

]
, where I denotes the identity matrix of order

m.
The symmetric skew Hamiltonian matrices occurring in mechanical and quantum me-

chanical problems form an important subclass of J centrosymmetric matrices and sym-
metric Hamiltonian matrices arising in solving continuous time linear quadratic optimal
control problems, algebra Riccati equations form an important subclass of J skew cen-
trosymmetric matrices, see for example [1] and references therein.

This paper focus on the inverse eigenvalue problems (IEPs) and the associated optimal
approximations of J-(skew) centrosymmetric matrices.

Inverse eigenvalue problems have found some important applications in systems biol-
ogy and bioinformatics [3, 4, 5, 6, 7]. An IEP concerns the reconstruction of a matrix from
prescribed spectral data. To be more specific, given a set of k (not necessarily linearly in-
dependent) vectors x j ∈ 𝔽n, j = 1, . . . ,k (n > k) and a set of scalars λ j ∈ 𝔽, j = 1, . . . ,k,
find a matrix A ∈ 𝔽n×n such that

Ax j = λ jx j (1)
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for j = 1, . . . ,k. Here 𝔽 ∈ {ℝ,ℂ} denotes the field of real or complex numbers. Usu-
ally, A is subject to additional constraints, typically given in the form that A ∈ Ω is re-
quired, where Ω denotes a certain subset of n×n matrices. Several different kinds of sets
Ω have already been dealt with in the literature: Jacobi matrices, symmetric matrices,
anti-symmetric matrices, anti-persymmetric matrices, unitary matrices, centro-symmetric
matrices, (generalized) Toeplitz matrices, symmetric anti-bidiagonal matrices. This is by
far not a complete list, see [2, 8, 12] for a recent review, a number of applications and an
extensive list of references.

A problem closely related to the inverse eigenproblem (1) is the following optimal
approximation problem: given a matrix Ã ∈ ℂn×n, find a matrix S with some prescribed
spectral data that gives the best approximation to Ã in the Frobenius norm, that is,

∣∣Ã−S∣∣F = inf
A∈S

∣∣Ã−A∣∣F , (2)

where S denotes the set of all possible solutions of (1). Such a problem may arise,
e.g., when a preconditioner with a specific structure is sought in order to solve linear
systems of equations efficiently, see e.g., [8]. If a structured inverse eigenproblem (1) is
considered, that is, A is required to be in some set Σ, then we obtain a structured optimal
approximation problem, where in addition to (2) A ∈ Ω is required.

This paper is organized as follows: after discussing the structure and properties of a J-
(skew) centrosymmetric matrix, respectively, in next section, we then consider the inverse
eigenvalue problems for such classes of matrices in Section 3. The optimal approximation
problems are considered in Section 4 and a conclusion is given in last section.

2 Structure and properties
In this section we begin with some basic notation. Throughout this paper, let W+

denote the Moore-Penrose inverse of W , let ℂ2m×2m
J = {A ∈ ℂ2m×2m∣AJ = JA}, i.e., the

set of all 2m×2m J-centrosymmetric matrices and 𝕊2m×2m
J = {A ∈ ℂ2m×2m∣AJ =−JA},

i.e., the set of all 2m×2m J-skew centrosymmetric matrices.

2.1 Structure
It is known that a matrix A ∈ ℂ2m×2m

J has the following structure

A =

[
B −C
C B

]
, B,C ∈ ℂm×m (3)

and a matrix A ∈ 𝕊2m×2m
J has the following structure

A =

[
B̂ Ĉ
Ĉ −B̂

]
, B̂,Ĉ ∈ ℂm×m. (4)

Let

P =

√
2

2

[
I I
iI −iI

]
, (5)

which is an unitary matrix. Then we have the following result, see [1, Theorem 2.5].

330 The 3rd International Symposium on Optimization and Systems Biology



Lemma 1 Let A ∈ ℂ2m×2m, then
(i) A matrix A ∈ ℂ2m×2m

J defined as in (3) if and only if

A = P
[

M
N

]
PH , (6)

where M = B− iC and N = B+ iC.
(ii) A matrix A ∈ 𝕊2m×2m

J defined as in (4) if and only if

A = P
[

M̂
N̂

]
PH , (7)

where M̂ = B̂− iĈ and N̂ = B̂+ iĈ.

2.2 Properties
Here we discuss eigenstructures of A ∈ ℂ2m×2m

J and A ∈ 𝕊2m×2m
J , respectively.

Theorem 1 Assume that A ∈ ℂ2m×2m, and (λ ,x) be a eigen pair of A.
(i) If A ∈ℂ2m×2m

J , then x± iJx is also an eigenvector corresponding to the eigenvalue
λ . Furthermore, iJ(x+ iJx) = x+ iJx and iJ(x− iJx) =−(x− iJx).

(ii) If A ∈ 𝕊2m×2m
J , then (−λ ,Jx) is also an eigenpair of A.

Proof. From the hypothesis, we have that A ∈ ℂ2m×2m
J , that is AJ = JA. Then Ax = λx

implies A(iJx) = λ (iJx) and A(x± iJx) = λ (x± iJx) immediately. Thus we have shown
that the first conclusion holds.

As for (ii), due to AJ = −JA and Ax = λx, we have AJx = −λJx immediately. Thus
we complete the proof. □

Partitioning x ∈ ℂ2m into the form xT = (xT
1 ,x

T
2 ) with xi ∈ ℂm, we have the following

result.

Theorem 2 Assume that x ∈ ℂ2m and P is defined as in (5). Then

PH(I − iJ)x =
√

2
[

0
x1 + ix2

]
and PH(I + iJ)x =

√
2
[

x1 − ix2
0

]
.

Proof. A straightforward calculation gives the proof. □

3 Inverse eigenvalue problems
In this section we first deal with the inverse eigenvalue problem for J-centrosymmetric

matrices. Due to special structure of eigenvectors of J-centrosymmetric matrices (Theo-
rem 1 (i)), the IEP can be described as follows.

Problem I Given X = [x1,x2, ⋅ ⋅ ⋅ ,xs]∈ℂ2m×s, Y = [y1,y2, ⋅ ⋅ ⋅ ,yt ]∈ℂ2m×t , Λ1 = diag(λ1,
λ2, ⋅ ⋅ ⋅ ,λs), and Λ2 = diag(λ1,λ2, ⋅ ⋅ ⋅ ,λt) with s, t <m, find an 2m×2m J-centrosymmetric
matrix A such that

A[X Y ] = [X Y ] diag(Λ1,Λ2), (8)
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where X and Y are required to satisfy

iJX = X and iJY =−Y. (9)

From Theorem 2, we have that

PH [ X Y ] =

√
2

2

[
X̂ 0
0 Ŷ

]
, X̂ ∈ ℂm×s,Ŷ ∈ ℂm×t . (10)

By Lemma 1, the Problem I has a solution if and on if each of

MX̂ = X̂Λ1 and NŶ = Ŷ Λ2 (11)

has a solution.
Thus we can always reduce the structured inverse eigenproblem (8) into two smaller

subproblems (11) with half size.

Theorem 3 Assume that X, Y , Λ1 and Λ2 are given as in Problem I. Let X̂ and Ŷ be
defined as in (10). Then Problem I has a solution if and only if

X̂Λ1X̂+X̂ = X̂Λ1 and Ŷ Λ2Ŷ+Ŷ = Ŷ Λ2. (12)

Its general solution can be expressed as

A = P
[

X̂Λ1X̂++K1(Im − X̂ X̂+)
Ŷ Λ2Ŷ++K2(Im − ŶŶ+)

]
PH ,

where K1, K2 ∈ ℂm×m.

Proof. From Lemma 1 and Theorem 1, it is sufficient to show MX̂ = X̂Λ1 if and only if
X̂Λ1X̂+X̂ = X̂Λ1, and its general solution can be expressed as

M = X̂Λ1X̂++K1(Im − X̂ X̂+), K1 ∈ ℂm×m, (13)

and NŶ = Ŷ Λ2 if and only if Ŷ Λ2Ŷ+Ŷ = Ŷ Λ2, and its general solution can be expressed
as

N = Ŷ Λ2Ŷ++K2(Im − ŶŶ+) K2 ∈ ℂm×m.

We prove the first equivalence; the proof of the second is similar.
If (12) holds, due to (Im − X̂ X̂+)X̂ = 0, then we have

MX̂ = [X̂Λ1X̂++K1(Im − X̂ X̂+)]X = X̂Λ1, (14)

which means (13) is its general solution. Conversely, if MX̂ = X̂Λ1 has a solution, then,
(13) is a solution and (14) implies that X̂Λ1X̂+X̂ = X̂Λ1 holds. □

Please note, that the set of all possible solutions S to the problem I may be empty.
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We now deal with the inverse eigenvalue problem for J-skew centrosymmetric matri-
ces. Due to special structure of eigenvectors of J-skew centrosymmetric matrices (Theo-
rem 1 (ii)), the IEP can be described as follows.

Problem II Given Z = [z1,z2, ⋅ ⋅ ⋅ ,zs] ∈ ℂ2m×s, Λ = diag(λ1, λ2, ⋅ ⋅ ⋅ ,λs), with s < m, find
an 2m×2m J-skew centrosymmetric matrix A such that

AZ = ZΛ, (15)

where we assume that λi ∕=−λ j.

Let Z = Zc +Zs, where Zc =
Z+iJZ

2 and Zs =
Z−iJZ

2 . Then, by Theorem 2, we have

PHZc =

[
X
0

]
and PHZs =

[
0
Y

]
(16)

By Lemma 1, the Problem II has a solution if and on if each of

M̂Y = XΛ and N̂X = Y Λ (17)

has a solution.
Again, we can always reduce the structured inverse eigenproblem (15) into two smaller

subproblems (17) with half size.

Theorem 4 Assume that Z, Λ are given as in Problem II. Let X and Y be defined as in
(16). Then Problem II has a solution if and only if

XΛY+Y = XΛ and Y ΛX+X = Y Λ. (18)

Its general solution can be expressed as

A = P
[

XΛY++K1(Im −YY+)
Y ΛX++K2(Im − X̂X+)

]
PH ,

where K1, K2 ∈ ℂm×m. Furthermore, in this case (−λi,Jzi), i = 1, . . . ,s, are also eigen-
pairs of A.

Proof. Theorem 1 (ii) implies that the pairs (−λi,Jzi), i = 1, . . . ,s, are eigenpairs of A if
AZ = ZΛ. Therefore, by Lemma 1 and Theorem 1, it is sufficient to show M̂Y = XΛ if
and only if XΛY+Y = XΛ, its general solution can be expressed as

M̂ = XΛY++K1(Im −YY+); (19)

and N̂X = Y Λ if and only if Y ΛX+X = Y Λ, its general solution can be expressed as

N̂ = Y ΛX++K2(Im − X̂X+).

We prove the first equivalence; the proof of the second is similar.
If (18) holds, due to (Im −YY+)Y = 0, then we have

M̂Y = [XΛY++K1(Im −YY+)]Y = XΛ, (20)

which means (19) is its general solution. Conversely, if M̂Y = XΛ has a solution, then,
(19) is a solution and (20) implies that XΛY+Y = XΛ holds. □
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4 The best approximation problems
Here we will deal with the following structured optimal approximation problem:

Given a matrix Ã ∈ ℂ2m×2m, find a matrix S ∈ S that gives the best approximation to
Ã in the Frobenius norm, that is,

∣∣Ã−S∣∣F = inf
A∈S

∣∣Ã−A∣∣F , (21)

where S denotes the set of all possible solutions of (8) or (15).
For any matrix Ã, we have Ã = Ac +As, where Ac =

1
2 (Ã+JÃJ) and As =

1
2 (Ã−JÃJ)

are the projections of Ã on C2m×2m
J and C2m×2m

s with respect to the inner product (F,G) =
trace(GHF), respectively. By Lemma 1,

Ac = P
[

Mc
Nc

]
PH and As = P

[
M̂s

N̂s

]
PH . (22)

If S ⊂ ℂ2m×2m
J is nonempty, we then have the following result.

Theorem 5 Given Ã ∈ ℂ2m×2m. Under the assumptions of Theorem 3 and if S is
nonempty, the problem (21) has a unique solution S, which can be expressed as

S = P
[

X̂Λ1X̂++Mc(Im − X̂ X̂+)
Ŷ Λ2Ŷ++Nc(Im − ŶŶ+)

]
PH , (23)

where Mc and Nc are defined as in (22).

Proof. From the hypothesis, we have Ã ∈ℂn×n and Ã = Ac+As. Using unitary invariance
of F-norm, I−XX+ = (I−XX+)2 = (I−XX+)H , I−YY+ = (I−YY+)2 = (I−YY+)H ,
Mc = McXX++Mc(I −XX+) and Nc = NcYY++Nc(I −YY+), we therefore have

∣∣Ã−A∣∣2F = ∣∣Ac −A∣∣2F + ∣∣As∣∣2F = ∣∣Mc − X̂Λ1X̂−K1(Im − X̂ X̂+)∣∣2F
+∣∣Ns − Ŷ Λ2Ŷ+−K2(Im − ŶŶ+)∣∣2F + ∣∣M̂s∣∣2F + ∣∣N̂s∣∣2F

= ∣∣(McXX+− X̂Λ1X̂+)∣∣2F + ∣∣(Mc −K1)(Im − X̂ X̂+)∣∣2F + ∣∣NsYY+− Ŷ Λ2Ŷ+∣∣2F +

∣∣(Nc −K2)(Im − ŶŶ+)∣∣2F + ∣∣M̂s∣∣2F + ∣∣N̂s∣∣2F .

This implies ∣∣Ã−A∣∣2F reaches it minimal if and only if

(Mc −K1)(Im − X̂ X̂+) = 0, and (Nc −K2)(Im − ŶŶ+) = 0,

which means that (23) holds. In this case, min∣∣Ã−A∣∣2F = ∣∣(McX̂ X̂+ − X̂Λ1X̂+)∣∣2F +
∣∣NsŶŶ+− Ŷ Λ2Ŷ+∣∣2F + ∣∣M̂s∣∣2F + ∣∣N̂s∣∣2F . □

If S ⊂ 𝕊2m×2m
J is nonempty, we have the following result.

Theorem 6 Given Ã ∈ ℂ2m×2m. Under the assumptions of Theorem 4 and if S is
nonempty, the problem (21) has a unique solution S, which can be expressed as

A = P
[

XΛY++ M̂s(Im −YY+)
Y ΛX++ N̂s(Im − X̂X+)

]
PH ,
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where M̂s and N̂s are defined as in (22).

Proof. Again, using the fact that for any matrix Ã, Ã = Ac +As, where Ac =
1
2 (Ã+ JÃJ)

and As =
1
2 (Ã− JÃJ) are the projections of Ã on C2m×2m

J and C2m×2m
s with respect to the

inner product (F,G) = trace(GHF), respectively, and (22), we can complete the proof by
a similar proof of Theorem 5. □

5 Conclusion
It is a basic tenet of numerical analysis that structure should be exploited whenever

solving a problem. In numerical linear algebra, this translates into an expectation that
algorithms for general matrix problems can be streamlined in the presence of properties
such as symmetry, definiteness, sparsity, Hamiltonian, Toeplitz, Vandermonde, etc.. That
is the so-called structured matrix problems.

There are many applications that generate structured matrices and by exploiting the
structure one may be able to design faster and/or more accurate algorithms; furthermore,
structure may also help in producing solutions which have more precise physical meaning
[9, 10, 11].

Here we first exploit the special structure of matrices with J-centrosymmetry to pro-
pose an inverse eigenvalue problem and the associated optimal approximation problem
for such a class of matrices, which may be of potential applications in bio-quantum me-
chanical problems. The conditions on which the IEP has a solution are discussed, and
its general solution is given if it is solvable. For the associated optimal approximation
problem, we show that there exist an unique solution if the set of solutions of IEP is not
empty. The expression of this unique solution is presented.

The case for matrices with J-skew centrosymmetry is also discussed.
As we have showed, the core of this paper is to reduce each of the two problems

under consideration into two smaller subproblems with half size, so that the structured
solutions can be obtained. On the other hand, the structured algorithms for computing
those problems can be easily developed, in which about half of the memory units and
about fourth of computational costs are required, as compared to the standard approach
for a arbitrary matrix.
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