The Third International Symposium on Optimization and Systems Biology (OSB’09)
Zhangjiajie, China, September 20-22, 2009
Copyright © 2009 ORSC & APORC, pp. 319-328

Gene Prioritization for Type 2 Diabetes in
Tissue-specific Protein Interaction Networks*

Biao-Bin Jiang! Ji-Guang Wang? Jing-Fa Xiao®
Yong Wang?'

!School of Chemical Engineering & Environment, Beijing Institute of Technology,
Beijing 100081, China

2 Academy of Mathematics and Systems Science, Chinese Academy of Science,
Beijing 100190, China

3Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China

Abstract

Computationally prioritizing disease genes by large-scale bio-experimental data can provide
important insights into the underlying mechanism of complex diseases. Here, we explore the topol-
ogy of the protein-protein interaction network and apply the PageRank algorithm to identify can-
didate genes relating to type 2 diabetes. Importantly, a novel idea is introduced to rank the disease
genes in tissue-specific protein-protein interaction networks instead of the global protein interaction
network. To this end, we extend the original PageRank algorithm by adopting a block-based strat-
egy. The leave-one-out cross validation is conducted to evaluate the performances of all ranking
algorithms. The resulting ROC curves show that the proposed method with tissue-specific infor-
mation performs better than original PageRank algorithm in the global protein-protein interaction
network and each subnetwork of single tissue. Finally, four candidate genes are highlighted for
further experimental validation due to their higher scores.
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1 Introduction

With the completion of the Human Genome Project and the great advances in high-
through biotechnologies, biology has become a data-intensive discipline. Thus a great
challenge for biologists is to uncover the underlying mechanisms of complex biological
activities behind vast experimental data. It gives rise to the close cooperation between bi-
ologists and data analysts with backgrounds in computer science, mathematics or physics,
and the birth of a new interdiscipline, bioinformatics. A typical subject in bioinformatics
is to identify key disease genes among a large amount of candidate genes by computa-
tional analysis of bio-experimental data such as gene expression profiles [12] and protein-
protein interaction networks (PPINs) [3]. The aim of this study is to help biologists to
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identify and highlight potential disease gene candidates for further bio-experimental val-
idation.

During recent decades, several gene prioritization methods have been developed [17,
16, 8, 1, 2]. Roughly speaking, these methods can be divided into two categories accord-
ing to their input data. The first class is text mining and genomics data mining based
methods. For instance, GeneSeeker [17] is a web tool that selects candidate genes of
interest based on expression and phenotypic data from both human and mouse through
several online databases. eVOC system [16] performs candidate gene selection based on
the association between each eVOC anatomy term and the disease name according to their
co-occurrence in PubMed abstracts through a combination of text and data-mining. DPG
(Disease Gene Prediction) [8] and PROSPECTS [1] require only basic sequence informa-
tion to classify genes as likely or unlikely to be involved in disease. The extended version
of PROSPECTS, SUSPECTS [2], is built by integrating annotation data from Gene On-
tology (GO), InterPro and expression libraries. More details about the above methods
have been reviewed by Nicki Tiffin ez al. [15].

The second class is biological network based methods. For example, Ma et al. [9]
develop a system for gene prioritization associated with a phenotype by Combining Gene
expression and protein-protein Interaction network (CGI) using Markov random field the-
ory. Another paradigm is CANDID [5] which is designed to rank candidate genes by
eight evaluative criteria (publication, protein domains, conservation, expression, inter-
action, linkage, association, and custom). The other attractive research tendency is to
borrow analytical methodology from other network study (like the internet and the social
networks) to explore biological networks since all these networks share several common
characteristics such as scale-free and small-world properties [19]. For instance, Morrison
et al. [10] design a gene prioritization system to analyze microarray data by using the
famous PageRank algorithm [11], which is developed by Google’s founders Larry Page
and Segrey Brin to rank the importance of web pages on the internet. Furthermore, Chen
et al. [4] employ three Web networks algorithms, PageRank, HITS and k-step Markov, to
identify disease genes in protein-protein interaction networks.

However, we note that there is still plenty of room for further improvement of gene
prioritization methods and it is in pressing need to achieve more accurate and convincing
results. A plausible way is to consider disease-related information on tissue level in gene
prioritization since some diseases possess tissue-specific traits. And it is irrational to rank
all disease candidate genes in a single list on the whole PPIN since some of genes may
localize and function in different tissues though they involve in the same pathogenesis.
That is the basic start point of our work in this paper.

In this paper, we propose an approach motivated from PageRank and BlockRank [6]
algorithms to prioritize Type 2 Diabetes (T2D) candidate genes using tissue-specific pro-
tein interaction networks which are assembled through the analysis of gene expression
in human cells or tissues [14]. Firstly, we apply the PageRank in the prioritization of
all T2D candidate genes on the global PPIN obtained from Bossi’s literature [3]. Then
we propose ensemble weighting and BlockRank algorithm to rank T2D candidate genes
co-expressed in five T2D-related tissues respectively, pancreas, pancreatic islets (insulin
secretion), liver, skeletal muscle, and adipose tissue (insulin action). They are all main
diabetes-related metabolic environments and well demonstrated in authoritative clinical
literature [13, 18]. Finally, we optimize the parameters of the algorithms and compare the
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performance of our method with other alternative methods in literature [4].

2 Materials and methods
2.1 Data sources

The tissue-specific protein-protein interaction data used in this study was downloaded
from literature [3] at the Molecular Systems Biology website. It comprises 80,922 phys-
ical interactions that occur among 10,229 human proteins [3]. To determine the tissue
specificity of human protein interactions, Bossi ef al. used gene expression data from Mi-
croarray experiments in [14]. The basic philosophy is that if two genes are co-expressed in
a cell, then under some conditions their protein products can physically interact [3], vice
versa. As a result, all the co-expression relationships in 79 tissues are marked by binary
variables. And a matrix of 80,922 interactions by 79 tissues mathematically represents
the tissue-specific protein-protein interaction network.

2.2 Seed genes for type 2 diabetes

We propose a general method which can be widely used to study various complex dis-
eases by highlighting their related candidate genes. In this paper, we use type 2 diabetes
as a proof-of-concept study to show the efficiency of our new method. It is well known
that Type 2 Diabetes (T2D) is a complex disease with polygenic traits differing from
Mendelian diseases with monogenic traits [18]. Thus, it is unrealistic to make any expla-
nation on the pathogenesis of T2D by means of a case-control study on any single genetic
variant. Rational study should be performed from the system level such as network-based
analysis which asks for the construction of gene networks relating to T2D. Therefore, we
query “Type 2 Diabetes” and “non-insulin-dependent diabetes” in Morbid Map of OMIM
database at the NCBI website. There are 91 genes matching these records. We manu-
ally remove non-coding genes, overlapped genes involved in multiple phenotypes, and
absent genes in the tissue-specific PPINs, then left 34 independent known genes as the
gold-standard positive dataset (seed genes). Mining the tissue-specific PPINs, we extract
285 immediate interactors (1-order neighbors) of these 34 seed genes as the approximate
gold-standard negative dataset.

2.3 PageRank algorithm

The whole procedure of gene prioritization is illustrated in Figure 1A. And Figure 1B
displays the network modeling using PageRank algorithm that is described mathemati-
cally in this section.

Generally, the protein-protein interaction network is represented as an un-weighted
and undirected graph, G(V, E) where proteins (genes) are nodes (vertex) and interactions
are edges. For example, a small PPIN consisting of six proteins is shown in Figure 1 B1.

The topology of this PPIN can be formulated as a square symmetric matrix L = (L;;)
(adjacent matrix of graph G), where L;; = 1 if protein p; can interact with protein p;, and
L;; = 0 otherwise (see Figure 1 B2).

From Markov chain perspective, the PPIN can be explained by a probability transition

matrix that one protein may interact with other proteins in this network with a certain de-
gree of probability. Each row of the transition matrix represents the connection probability
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Figure 1: (A) Schematic overview of our gene prioritization framework. (B) Illustration
for the ranking algorithm. B1: The graph representation of the example network. B2:
Adjacency matrix L. B3: Transition matrix P. B4: Irreducible transition matrix P

of one protein to other proteins in this network. Any suitable probability distribution may
be used across the rows [7]. We use uniform distribution in this work since the PPIN is
an unweighted network. Thus, we obtain the transition matrix of Markov model P = (P;;)
from connection matrix L as follows (see an example in Figure 1 B3):

XjLij
Since the PPIN has been constructed from seed genes and their neighbors from the

whole human protein interactome, it guarantees that there is no isolated protein (indicated
as dangling node [7]) in this network. Thus, no row in the matrix P contains all zeros.

Pj=

However, this transition matrix P cannot ensure the existence of the stationary vector
of the Markov chain, i.e., the PageRank vector. If the transition matrix were irreducible,
the PageRank vector is guaranteed to exist. Thus, one more adjustment, to make P ir-
reducible, is implemented [7]. The matrix P is revised into an irreducible matrix P (see
Figure 1 B4) as below

P=(1-B)P+Bev”

where 0 < 8 < 1. B is the back probability indicating that one web surfer may open
a webpage via internet browser other than hyperlinks [7]. It seems that the surfer stop
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browsing via hyperlinks and reconstruct a root website. v is the personalization vector
used as the hint of prior knowledge. e is the vectors of all ones. Here, we give the expla-
nation of B from gene prioritization perspective that all proteins are inclined to interact
with seed proteins based on the proportion of 8 in each time step. In our implementation,
the element of v7', v; equals to 1/34 if protein i comes from a seed gene (totally 34 seed
genes); v; = 0 otherwise, with the elements of vl summed up as 1.

The aim of solving Markov chains is to compute the stationary vector 7 , which can

be viewed as the eigenvector problem [7]:
n'P=n"

where, the ith element of &7, 7; , is the PageRank score of webpage i which indicates
the importance of protein i in our work

We use an iterative method to solve the above equation. For any starting vector x(0)7
(generally, x(O7 = ¢7 /n, indicating uniform distribution), we use the following power
method to P as follows,

LT _ (=1DT p
We iterate the above formula until the residual 7 = x(07 — x*=17 5 Jess than some
predetermined tolerance. In this study, we set the maximal iteration time as 20. Even-
tually, the stationary vector 7 containing the PageRank score of each protein will be
obtained once the residual 7 is small enough or total 20 iterations are accomplished.

2.4 BlockRank algorithm

Previous studies rank genes in the whole-genome protein-protein interaction data.
However we note that the general PPIN is a composite of tissue-specific protein-protein
interaction networks. In this paper, we aim to further investigate the tissue specific struc-
ture of the PPIN to improve disease gene identification accuracy. For example, T2D is
closely related to five tissues. We need to perform gene prioritization in each T2D-related
tissue: pancreas, pancreas islet, liver, adipose, and skeletal muscle. To meet this demand,
we use the BlockRank algorithm motivated from basic PageRank.

The basic idea of the BlockRank algorithm is to exploit this structure to speed up the
computation of PageRank by a 3-stage algorithm. Suppose there are several blocks in the
network. Firstly the local PageRank scores for each blocks are computed independently
using the link structure of that block. As a second step these local PageRanks are then
weighted by the “importance” of the corresponding block. Finally the standard PageRank
algorithm is then run using the weighted aggregate of the local PageRanks as its start-
ing vector. Empirically, this algorithm speeds up the computation of PageRank twice in
realistic scenarios.

Specifically our procedure of gene prioritization is summarized as follows [6]:

1. Splitting the PPIN into blocks by tissues.
2. Computing the local PageRank score for each block.
3. Estimating the relative importance of each block (BlockRank scores).
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4. Weighting the local PageRank scores in each block by the BlockRank scores of
that block, and concatenate the weighted local PageRank of each protein to form
an approximate global PageRank vector z.

5. Using z as a starting vector for standard PageRank.

Assuming there are k blocks in the PPIN (k = 5 in this study), we need to construct
a k x k transition matrix B where the element B;; represents the transition probability of
block i to block j. Firstly we count the number of protein-protein interactions between
block i and block j as the initial value of B;; and normalize each row of matrix B as
uniform-distributed probability vector with the sum of elements as 1. Then we use stan-
dard PageRank algorithm to compute the BlockRank scores of each block with block-
based transition matrix B and two uniform-distributed k-vectors as starting vector and
personalization vector respectively.

For each node (protein) in the PPIN, the initial value in the starting vector z for global
PageRank is its local PageRank scores weighted by its block’s BlockRank scores. Com-
puting the Global PageRank, we rank all proteins using the global PageRank scores, and
compare this ranking with that generated by general PageRank in cross validation exper-
iment.

In addition, a simple ensemble method is also applied to weight each block based on
the percentage of disease genes in each tissue. Simply, a tissue in which more disease
genes are co-expressed is expected to be more relevant to the disease progression. Thus,
compared with the BlockRank algorithm to computationally weight tissues by the net-
work topology, the ensemble method uses a more straightforward strategy and yields a set
of weights directly from seed gene distribution perspective.

3 Results

As a pilot study, we perform a proof-of-concept analysis by comparing our gene pri-
oritization method with other alternative methods. We designed the leave-one-out cross-
validation procedure to benchmark these methods. Specifically, we remove one gene from
the personalization vector in each test and guarantee the personalization vector is still a
probability vector with the sum of its elements as 1. Then we use our proposed method
to rank the 34 seed genes and their 285 1-order neighbors together. The receiver operat-
ing characteristic (ROC) curve is created for evaluating each ranking algorithm by setting
various cutoffs. We choose leave-one-out method since it has relatively smaller variance
when gold-standard positive samples are scarce.

After plenty of trials, we choose the back probability as 0.08 in the PageRank algo-
rithm. Firstly we perform block-based PageRank algorithm on tissue-specific PPINs.
Then we compare the performance of our methods by designing two control experi-
ments. One control is that we directly apply the standard PageRank algorithm in the
global protein-protein interaction network. The second experiment is to apply PageRank
algorithm in the five tissue specific protein-protein interaction networks individually. All
the ROC curves of BlockRank, standard PageRank in global PPIN, and local PageRank
in five tissue-specific PPINs are shown together in Figure 2.

From Figure 2, we can see that the ROC for single tissue outperforms the random
control, which clearly demonstrates that every tissue-specific protein interaction network
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Figure 2: Comparison of different methods for gene prioritization by the ROC curves
from leave-one-out cross validation.

is informative regarding to identification of T2D disease genes. Also their accuracies are
different tissue by tissue. For example, the gene ranking result in the PPIN of adipose
is better than that of pancreatic islets. As is known that adipose tissue is derived from
lipoblasts and more closely relates to T2D. Its main function is to store energy in form of
fat. Obesity or being overweight in humans and most animals does not depend on body
weight but on the amount of body fat-specifically, adipose tissue.

We expect that higher accuracy can be achieved by integrating all these tissue spe-
cific PPINs together. Figure 2 shows that directly applying PageRank in the global PPIN
achieves a pretty good accuracy by outperforming all the results obtained in any single
tissue-specific PPIN, which well demonstrates the effectiveness of the data integration
strategy without the tissue-specific information. The underlying reason is that different
tissue relates to T2D in different ways. If we comprehensively consider all the tissues in
human PPIN, we could have more confidence in disease gene identification.
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Importantly, we observe that our BlockRank method in tissue-specific PPINs outper-
forms the direct application of PageRank in global PPIN. We calculate their area under
curve (AUC) values to compare their performances. The AUC values of BlockRank and
PageRank are 0.9254 and 0.8930 respectively. Especially when the false positive rate is
less than 0.2, we can see significant improvement of our method in the increase of sensi-
tivity. This further demonstrates the effectiveness of our newly introduced idea to consider
tissue-specificity in the global PPIN. The possible reason is that we extract the useful in-
formation from the T2D related tissues and discard the information in other tissues which
may become noise in our gene identification procedure. In the comparison of literature
[4], we find that the AUC value of our block-based PageRank algorithm is higher than that
of the PageRank with back probability as 0.3 which just achieves the AUC of 0.8 or less.
It indicates that the performance of PageRank algorithm is sensitive to the variation of the
parameters (back probability and iterative times). Surprisingly, we also see in Figure 2
that the simple ensemble method performs a little bit better than BlockRank weighting,
which demonstrates that the utilization of percentage of of disease genes to weight tissues
is more informative in gene prioritization than purely using the topology of global protein
interaction network.

In Table 1, we list 10 disease genes and 4 candidate genes related to diabetes as an
example and their ranks. We want to emphasize that four candidate genes which are
deserved further experimental validation. Because they are currently not in the gold-
standard positive dataset (seed genes) and they have even higher ranks than some of the
disease seed genes.

Table 1: The 14 genes related to diabetes and their ranks by different ranking methods

Gene Name Seed Label PageRank BlockRank Ensemble Liver Adipose Pancreas Pancreas islet Skeletal muscle
INSR insulin receptor 1 1 1 1 1 1 1 1 1
SLC2A4 solute carrier family 2

(facilitated glucose transporter), 1 5 7 2 8 3 3 2 2
IRS2 insulin receptor substrate 2 1 4 3 3 6 4 4 4 3
IRS1 insulin receptor substrate 1 1 2 2 4 2 2 2 180 203
HNF4A hepatocyte nuclear factor 4, 1 3 5 5 5 5 5 5 4
PPAR(} peroxisome proliferator- 1 5 19 7 212 219 6 3 206
activated receptor gamma

TCF7L2 transcription factor 7-like 2

(T-cell specific, HMG-box) 1 18 54 " 216 10 9 8 8
INS insulin 1 7 4 16 209 217 203 7 6
KLF11 Kruppel-like factor 11 1 63 202 30 217 55 212 17 17
ABCC8 ATP-binding cassette, sub-

family C (CFTR/MRP), member 8 1 2 59 31 214 22 an 14 16
EIF6 eukaryotic translation initiation 0 12 8 20 22 20 16 16 18
ALDOA aldolase A, fructose- 0 10 9 22 21 18 15 15 219
B2M beta-2-microglobulin 0 36 38 29 50 31 23 23 25
YWHAB tyrosine 3-

monooxygenase/tryptophan 5- 0 62 16 34 29 32 26 47 76

monooxygenase activation protein,
beta polypeptide

4 Conclusions

In this paper, we use the tissue-specific PPINs data to implement disease gene pri-
oritization and achieve better accuracy in the preliminary experiments with T2D as an
application example. Here, we can conclude that tissue-specific PPINs data can offer
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deeper insight to disease gene priorities. In the research of complex diseases like T2D, a
gene may participate in different pathways and function in different tissues. Simply rank-
ing the importance of gene in a single global network cannot capture this kind of complex
situation. In this study, we also verify that the methodological achievements in the in-
ternet and the social networks are potentially powerful tools in the research of biological
networks. It is expected that more analytical methodologies in complex networks would
bring bio-molecular network study a brilliant vision. In the future, one ongoing direction
is to improve our method for deeper exploration to T2D or other complex diseases by
highlighting more potential disease genes. Another ongoing effort is to develop a general
methodology by extensively integrating other data sources.
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