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Abstract Clustering data based on a measure of similarity (or dissimilarity) is a critical step in
scientific data analysis and especially in current bioinformatics field. A typical example is, with the
advent of DNA Microarrays, clustering analysis becomes a powerful way to explore the expression
profiles of all genes in the genome. And many algorithms have been developed for this problem.
Here, we aim to introduce a more robust clustering technique (neural gas algorithm) for this problem
and hope it can be applied to other problems in bioinformatics.

Keywords Gene expression profiles; Neural Gas; K-means; Clustering analysis

1 Introduction
Clustering analysis of data based on a measure of similarity is a critical and basic step

for many problems in the field of computational biology. The common approach is to
use original data to learn a set of centers such that the sum of error residues between data
points and their closest centers is as small as possible. A typical example in computational
biology is clustering analysis of Microarray data which can provide a compact global
view of the whole expression profiles of all genes in the genome. To analyze the large
number of genes in the complicated biological systems, researchers usually group the
genes with similar expression profiles. It has been observed that genes with the same
function or involved in the same biological process are likely to be co-expressed, hence
grouping genes’ expression profiles provides a means for understanding gene function,
gene regulation, and cellular processes [1].

Clustering analysis has become a indispensable exploratory technique for many prob-
lems in bioinformatics, especially for analyzing gene expression data. Many clustering
algorithms have been proposed for gene expression data analysis. For example, Eisen et
al. [10] applied a variant of the hierarchical average-link clustering algorithm to identify
groups of co-expression yeast genes. Tamayo et al. [21] used SOM to identify clusters
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in the yeast cell cycle and human hematopoietic differentiation data sets. Tavazoie et al.
[16] used k-means method to analyze Microarray data generated from studies of the yeast
cell cycle. More methods have been found in some review papers ([1], [2]).

However, a particular kind of vector quantization method, proposed by Martinetz and
Schlten [9], the Neural Gas (NG) network method is ignored by researchers for clustering
gene expression data. The NG algorithm has been successfully applied to vector clus-
tering, pattern recognition and topology representation, etc. ([17], [18]). Actually, it is
a more robust method than classical clustering methods like k-means (or k-medoid). In
this paper, we introduce NG algorithm to the biological data analysis and as an illustra-
tive study, we apply it to gene expression data. We compare it with the classical k-means
method [15] using three popolar validation measures proposed by Datta et al. [4] on two
well-known publicly available Microarray data sets.

2 Materials and Methods
2.1 Sporulation data

Data analyzed here were collected on the transcriptional program of sporulation in
budding yeast [3]. It was obtained at http://cmgm.stanford.edu/pbrown/sporulation. There
are 6118 protein-encoding genes in the yeast genome, and the mRNA levels were mea-
sured at seven time points during the sproulation process [3].

The ratio of each gene’s mRNA levels to its mRNA level in vegetative cells just before
transfering to sporulation medium is measured, more than 1000 genes whose root mean
square of log2-transformed ratios at a given time point was greater than 1.13, showed sig-
nificant changes in mRNA levels during sporulation [3]. About half of these genes were
induced, and half were repressed during the process. Overall, there are 522 positively
expressed genes for further analysis. The data are then summarized by a 522× 7 matrix
X = (Xi j), where Xi j denotes the expression ratio for gene i in time point j. There are no
missing values and the data were normalized as described below.

2.2 Combined yeast data
An aggregation of data from experiments on the budding yeast Saccharomyces cere-

visiae, including time courses of the mitotic cell division cycle [13], sproulation [3], the
diauxic shift [14] and temperature and reducing shocks, was described in [10] and was
obtained at http://rana.stanford.edu/clustering. This study produced gene-expression data
for 2467 genes in 79 samples. The gene expression data are summarized by a 2467×79
matrix X = (Xi j), where Xi j denotes the base-2 logarithm of the Cy5/Cy3 fluorescence
ratio for gene i in sample j. For each gene Xi with missing data, we simply estimate the
missing value using the average of observations on Xi.

2.3 Normalization
A gene expression data set from a Microarray experiment can be represented by a

matrix, where the rows represent genes, the columns represent the expression profiles of
samples (e.g., single timepoints or conditions), and each cell is the measured expression
level of a gene in a corresponding sample.

For the gene expression matrix, data normalization is indispensable before clustering
analysis. Here, we normalize the log2-transformed expression ratios so that their mean
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is zero and their variance is one before proceeding with the actual cluster algorithm [8].
Let Xi j denotes the log2-transformed expression ratio for gene Xi in sample j, then we
can normalize the data by subtracting its mean across the time points from the expression
level of each gene, and dividing by the standard deviation across the time points:

Yi j =
Xi j− X̄i√

1
n−1 ∑n

j=1(Xi j− X̄i)2
,

where X̄i =
1
n ∑n

j=1 Xi j is the mean over observations on Xi.

2.4 Neural gas algorithm
As one of the partitioning clustering algorithm, the Neural Gas (NG) network algo-

rithm has been successfully applied to vector quantization. Given a pre-specified number
K, the first step in the algorithm is to randomly select K reference vectors C1,C2, ...,CK .
When an input vector X is presented, the reference vectors are ranked according its Eu-
clidean distance to the input vector. After that the reference vectors are updated with
different weight according their positions in the ‘neighborhood ranking’ list.

Let Ci0 ,Ci1 , ...,Cik , ...,CiK−1 denote the neighborhood ranking of the reference vectors,
where Ci0 represents the nearest reference vector to X , Cik is the k nearest reference vector
to X . The ranking index associated with Ci is denoted by ki(X ,C), then Ci is adjusted by

Ci =Ci +α(t) ⋅Hλ (ki(X ,C)) ⋅ (X−Ci), i = 1,2, ...,K,

where α(t) ∈ [0,1] is the learning rate, which describes the overall extent of modification
form as α(t) = α0 ⋅ (α f /α0)

t/tmax, α0 (0.5 by default) and α f (0.005 by default) are the
initial and final learning rate, t and tmax represent the iteration step t and the maximum
number of iterations. Hλ (k) = exp(−k/λ ) ∈ [0,1] is the Competitive Hebbian Learning
scheme [9]. The parameter λ determines the number of reference vectors significantly
changing their positions in the updating steps, and decreases gradually from a large ini-
tial to a small final value. For the iteration step t, λ (t) = λ0 ⋅ (λ f /λ0)

t/tmax, λ0 (K/2 by
default) and λ f (0.01 by default) are used to set the rate at which learning rate α con-
verges. In order to obtain a good convergence rate and stable model, the neural gas model
requires fine tuning of these parameters. The detailed implementation of NG algorithm is
presented in [20].

By using this deterministic annealing like strategy, the neural gas network is a good
alternative to traditional partitioning clustering method: k-means clustering. One of the
appealing features of NG algorithm is that it is seldom sensitive to different initializations
due to the sequential learning scheme and use of neighborhood cooperation rule. And
the NG algorithm converges to lower distortion error than that resulting from k-means
clustering [9].

2.5 Validation
In order to compare NG algorithm with the k-means method, we use three validation

measures, each of which can be used for an objective basis of checking the consistency of
the grouping produced by a clustering algorithm [4]. The basic idea is that an algorithm
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should be rewarded for consistency or stability. We compared the results of clustering
with the full data and the reduced data after reducing the expression profiles by one unit.

The first criteria is the average proportion of non-overlap measure:

V1(K) =
1

Ml

M

∑
g=1

l

∑
i=1

(
1− n(Cg,i∩Cg,0)

n(Cg,0)

)
,

where K is the number of clusters , l is the number of samples, M is the total number
of genes. For each gene 1 ⩽ g ⩽ M, Cg,i denotes the cluster containing gene g in the
clustering based on the data set with time point i deleted, Cg,0 denotes the cluster in
the original data containing gene g, n(C) is the cardinality of cluster C. This measure
computes the (average) proportion of genes that are not put in the same cluster by the
clustering method under consideration on the basis of the full data and the data obtained
by deleting the expression levels at one time point at a time.

The second criteria is the average distance between means measure:

V2(K) =
1

Ml

M

∑
g=1

l

∑
i=1

d(x̄Cg,i , x̄Cg,0),

where x̄Cg,0 denotes the average expression profile for genes across cluster Cg,0 and x̄Cg,i

denotes the average expression profile for genes across cluster Cg,i. This measure com-
putes the (average) Euclidean distance between the mean log2-expression ratios of all
genes that are put in the same cluster by the clustering method under consideration on the
basis of the full data and the data obtained by deleting the expression levels at one time
point at a time.

The third criteria is the average distance measure:

V3(K) =
1

Ml

M

∑
g=1

l

∑
i=1

1
n(Cg,0)n(Cg,i)

× ∑
g∈Cg,0,g′∈Cg,i

d(xg,xg′ ),

where d(xg,xg′ ) is a Euclidean distance between the expression profiles of genes g and
g′. This measure computes the average distance between the log2-expression levels of all
genes that are put in the same cluster by the clustering method under consideration on the
basis of the full data and the data obtained by deleting the expression levels at one time
point at a time.

For a good clustering algorithm, these values should be as small as possible [4].

3 Results
Here, we test NG algorithm to group gene expression data and compare it with the

classic k-means method. We evaluate their performance based on the validation mea-
sures on two well-known publicly available Microarray data sets. In this paper, we use
Euclidean distance to measure the distance between two vectors.

First we consider 522 significant sporulation genes based on their 7 dimensional ex-
pression profiles [3]. Chu et al. (1998) aimed to cluster the expressed genes into seven
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Figure 1: The comparative results for the two clustering algorithms with three validation
measures respectively. In each plot, the red line represents the results of NG algorithm and
the blue line represents the result of k-means method respectively. (A) a panel plot for the
overall ‘proportion of non-overlap’ validation measure; (B) a panel plot for the average
distance between means measure; (C) a panel plot for the average distance measure;

temporal classes from biological view. For each of the two clustering algorithms under
consideration, we compute the three validation measures over a range of k values between
four and twelve like in [4]. Considering the randomicity of the two clustering algorithms,
we run each algorithm repeatedly (50 times) with each k value, and compare the best
clustering results about the three validation measures of each clustering algorithm. Figure
1 displays the corresponding results. The three plots show the NG has consistent better
performance than k-means for most cases. We can say that NG algorithm can converge to
a ‘better’ partition than k-means.

We further analyze the ‘best’ clustering results of the two clustering algorithms with
k = 7. In Chu’s research [3], sporulation in yeast is characterized by sequential transcrip-
tion of seven sets of genes-rapid including transient induction (metabolic), early I induc-
tion, early II induction, early-middle induction, middle induction, mid-late induction and
late induction. In the 522 significant sporulation genes, 52 genes are marked metabolic,
61 genes are marked early I, 45 genes are marked early II, 93 genes are marked early-mid,
157 genes are marked middle, 261 genes are marked mid-late, 5 genes are marked late
and 48 genes are unmarked. We use these prior knowledge to label clusters by hyper-
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Figure 2: The enrichment analysis of clusters with respect to the known gene annotations.
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Figure 3: The colored images of the two clustering results. In each colored image, a
single row of colored boxes represents one gene’s log2-expression ratio, a single column
represents one time point. Seven separate clusters are indicated by colored bars and by
identical temporal class labels. (A) The colored image of NG algorithm; (B) The colored
image of k-means method.
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Figure 4: The Panel plots for the two clustering algorithms on combined yeast dataset. (A)
a panel plot for the overall "proportion of non-overlap" validation measure; (B) a panel
plot for the average distance between means measure; (C) a panel plot for the average
distance measure;

geometric test. For each cluster obtained by the two clustering methods, we compute
the statistical significance of each cluster with each set of marked genes, and assign each
temporal class to the cluster with the highest significance. Figure 2 shows the value of
−log10(P) where P is the hyper-geometric P-value. We can easily find that the clusters
detected by NG algorithm are more significant than that of k-means. Six clusters corre-
spond to the known temporal condition well. Three clusters of k-means are significant in
‘Early I’ stage, and the fifth cluster of k-means are significant in three different stages.
These show the clusters of NG algorithm are more biological relevant. The colored im-
age of each cluster are given in Figure 3. In the colored image, a single row of colored
boxes represents one gene’s log2-expression ratio, a single column represents one time
point. Seven separate clusters are indicated by colored bars and by identical temporal
class labels.

We also test all the above analysis on the combined yeast data [10]. We compute the
results with k ranging from 40 to 80. Figure 4 provides the results of the three validation
measures for NG algorithm and k-means algorithm. It is clear that NG algorithm has
much better performance than the classical k-means (Here limited by the space, we just
show the results of the three measures).
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4 Discussion
Clustering analysis has become powerful tool for analyzing biological data in the past

decade. A huge number of methods have been developed for these problems ([10], [11],
[12], [16], [21]) . The classical problem of Microarray data clustering analysis have made
it to be typical test sets for evaluating the performance of different algorithms ([4], [5],
[6], [7]).

Discovering patterns hidden in gene expression data offers a tremendous potential for
advanced investigation in computational biology. Because of the large number of genes
and the complexity of biological systems, clustering is an necessary exploratory technique
for further analysis.

Here, we introduced the robust NG algorithm to the bioinformatics field for its effi-
ciency. An illustrative study has been done on gene expression data and compare it with
the most common partition method: k-means algorithm [15]. We evaluate their perfor-
mances with three validation measures [4] on two well-known publicly available Microar-
ray data sets. Considering gene expression data is noisy and has a significant number of
outliers, and the neural learning process makes NG more robust than k-means algorithm
to noisy data. From the results we can say that NG algorithm can group gene expression
data into more stable clusters than k-means method. Thus, we hope that the NG algorithm
can be a useful complementary to the computational biology and can be applied to other
biological problems.
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