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Abstract In this report, we propose a new symbolic-numeric method of differential algebra and a
numerical parameter optimization algorithm. First, we utilize differential elimination, which is an
algebraic approach for rewriting a system of differential equations into another equivalent system,
to derive the constraints between the kinetic parameters from the original system. Second, we intro-
duce these constraints to effectively optimize the parameters into a genetic algorithm, Real-Coded
Genetic Algorithms (RCGAs), which is a numerical parameter optimizing method. To evaluate the
ability of our method, we performed a simulation study for an artificial biological network includ-
ing one measured and three unmeasured molecules. As a result, our method, the symbolic-numeric
method of differential elimination and RCGAs, precisely estimated the kinetic parameters in the
simulated network, while RCGAs failed. Thus, our method is useful for analyzing the dynamics of
a biological network including unmeasured molecules.

Keywords symbolic-numeric method, differential elimination, real-coded genetic algorithms (RC-
GAs)

1 Introduction
The investigation of network dynamics is a major issue in systems biology [1]. A

network model for describing the kinetics of constituent molecules is usually first con-
structed with reference to the biological knowledge, and then the model is mathemati-
cally expressed by differential equations, based on the chemical reactions underlying the
kinetics. Finally, the kinetic parameters in the model are estimated by various parame-
ter optimization techniques [2], from the time series data measured for the constituent
molecules. In the last stage, we cannot always obtain the data measured for all of the con-
stituent molecules, due to limitations of measurement techniques and ethical constraints.
Thus, one of the issues we should resolve is that the parameters are estimated from the
data for only some of the constituent molecules. Unfortunately, it is frequently difficult to
estimate the parameters in such a network model including unmeasured variables.
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Recently, Boulier and his colleagues developed differential elimination [3], derived
from the Rosenfeld-Gröbner base [4], and applied it to solve the issue of network dynam-
ics including unmeasured variables [3, 5]. In their application, the equations rewritten by
differential elimination from the system of differential equations were utilized to estimate
the initial values for the parameter optimization, by Newton-type numerical optimization.

Here, we propose a new method for optimizing the parameters in a network includ-
ing unmeasured variables, in combination with a genetic algorithm [6, 7] and differential
elimination [3]. Our method partially utilizes a technique from a previous study [3] about
the introduction of differential elimination into the parameter optimization in a network
including unmeasured variables. Instead of using differential elimination for estimating
the initial values for the following parameter optimization, the equations reduced by dif-
ferential elimination are directly introduced as the constraints into the genetic algorithm
for the parameter optimization. To validate the effectiveness of the constraint introduc-
tion, we performed a simulation where we assumed that a network was composed of four
molecules, and the data for only one molecule among them were measured. The param-
eter values estimated by our method were compared with those generated by the genetic
algorithm without the constraints.

2 Results and Discussion
2.1 Analyzed Model

We prepared a network model containing four molecules, as shown in Fig. 1 (A). The
differential equation representation of Fig. 1 is shown in eq. 1.

dx1(t)
dt

= k21x2 + k31x3 + k41x4 − ke1x1(t) (1)

dx2(t)
dt

= −ke2x2 − k21x2

dx3(t)
dt

= −ke2x3 − k31x3

dx4(t)
dt

= −ke2x4 − k41x4

In the model, we assume that the molecules, x2, x3, and x4, activate x1, with linear
relationships. Notably, only the amount of molecule x1 among the four molecules is
measured.

We generated the reference curve of x1 for estimating the kinetic parameter set un-
der the following initial conditions for each molecule and kinetic constant: x1(0) =
10.0,x2(0) = 130.0,x3(0) = 80.0,x4(0) = 170.0,k21 = 0.01,k31 = 0.1,k41 = 10.0,ke1 =
5.0,ke2 = 3.0. The generated reference curve (0 ≤ t ≤ 1 at 0.01 intervals) is shown in Fig.
1 (B).

2.2 Constraints from Differential Elimination
We derived the constraint equations from differential equations of the analyzed net-

work model (eq. 1), by using differential elimination (see details in 3.2).
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Figure 1: Analyzed model and reference curve
(A) Analyzed model. (B) Reference curve of x1 generated by given parameter values.

C1,t =
1.0

k21(k21 − k31)(k21 − k41)
(

d3

dt3 x1(t)+(k31 + k41 + ke1 +2ke2)
d2

dt2 x1(t) (2)

+(k31k41 + k31ke1 + k41ke1 + k31ke2 + k41ke2 +2ke1ke2 + k2
e2)

d
dt

x1(t)

+ke1(k31 + ke2)(k41 + ke2)x1(t)− k21(k21 − k31)(k21 − k41)x2(t)) = 0

C2,t =
1.0

(k21 − k31)k31(k31 − k41)
(

d3

dt3 x1(t)+(k21 + k41 + ke1 +2ke2)
d2

dt2 x1(t) (3)

+(k41(ke1 + ke2)+ k21(k41 + ke1 + ke2)+ ke2(2ke1 + ke2))
d
dt

x1(t)

+ke1(k21 + ke2)(k41 + ke2)x1(t))+ x3(t) = 0

C3,t =
1.0

(k21 − k41)(k31 − k41)k41
(

d3

dt3 x1(t)+(k21 + k31 + ke1 +2ke2)
d2

dt2 x1(t) (4)

+(k21k31 + k21ke1 + k31ke1 + k21ke2 + k31ke2 +2ke1ke2 + k2
e2)

d
dt

x1(t)

+ke1(k21 + ke2)(k31 + ke2)x1(t)+(k21 − k41)k41(−k31 + k41)x4(t)) = 0
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C4,t =
d4

dt4 x1(t)+(k21 + k31 + k41 + ke1 +3ke2)
d3

dt3 x1(t) (5)

+(k21k31 + k21k41 + k31k41 + k21ke1 + k31ke1 + k41ke1

+2k21ke2 +2k31ke2 +2k41ke2 +3ke1ke2 +3k2
e2)

d2

dt2 x1(t)

+(k31(k41(ke1 + ke2)+ ke2(2ke1 + ke2))+ k21(k41(ke1 + ke2)+ k31(k41 + ke1 + ke2)

+ke2(2ke1 + ke2))+ ke2(k41(2ke1 + ke2)+ ke2(3ke1 + ke2)))
d
dt

x1(t)

+ke1(k21 + ke2)(k31 + ke2)(k41 + ke2)x1(t) = 0

In the above four equations, C4,t is an equation of x1, its derivatives, and the param-
eters, and the three remaining constraints are equations of x1, its derivatives, the param-
eters, and either x2, x3, or x4. Since the solutions of x2, x3, and x4 can be analytically
obtained from eq. 1, we can numerically calculate the four constraint values by using the
parameter values. The above constraints (eq. 2 - eq. 5) are introduced into the genetic
algorithm as the constraints for parameter estimation, as described below.

2.3 Objective Function in Symbolic-Numeric Method
In our study, the objective function is composed of two terms: one is the standard

error function between the estimated and sample data, and the other is the constraints (eq.
2 - 5) obtained by differential elimination (DE constraints). The error function is defined
as follows: Suppose that xc

1,t is the time-course data at time t of x1 calculated by using
the estimated parameter values, and xs

1,t represents the sampling data (reference curve) at
time t of x1. The sum of the absolute value of the relative error between xc

1,t and xs
1,t gives

the total relative error, E.

E =
T

∑
t=1

∣∣∣∣∣
xc

1,t − xs
1,t

xs
1,t

∣∣∣∣∣ (6)

As usual, the above error function is an objective function for RCGAs (OFRCGAs), i.e.,

OFRCGAs = E. (7)

Next we obtain the DE constraints as the linear combination of eqs. 2 - 5, as follows:

CDE =
L

∑
l=1

T

∑
t=1

∣Cl,t ∣ (8)

where L = 4 and T = 100.
Finally, we introduce the DE constraints into the objective function of the RCGAs:

we defined the objective functions for our symbolic-numeric method (OFSN) as:

OFSN = αOFRCGAs +(1−α)CDE (9)

where α = 0.99975. The computational task is to determine a set of parameter values that
minimize to OFSN (see details in 3.3).
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2.4 Estimation of Kinetic Parameters
We performed RCGAs and our symbolic-numeric method to estimate the kinetic pa-

rameter set (k21, k31, and k41) 200 times from the data in Fig. 1 (B). We successfully
obtained 132 parameter sets by RCGAs and 90 sets by the symbolic-numeric method:
we regarded the outcome as a success, when E/T in 2.3 satisfies less than 0.01 until
20,000 generations are reached. The number of successful estimations by RCGAs was
larger than that by the symbolic-numeric method. This is because the constraints in the
symbolic-numeric method might strongly affect the parameter estimation.

The histograms of the estimated values for the three parameters are shown in Fig. 2.
As seen in the figures, the three parameters were correctly estimated by the symbolic-
numeric method, while all of the estimations by RCGAs failed. Figure 2 (A) shows the
histogram of the k21 values. The most frequent values estimated by the symbolic-numeric
method were found in the bin corresponding to the range from 0.005 <estimated k21
≤ 0.015, which included the correct value, 0.01. In addition, the estimated values were
concentrated around the correct value. In contrast, although the most frequent values
generated by RCGAs were also found near the correct value, the estimated values were
distributed uniformly in the range from 0.01 to 0.05. A similar situation is shown in Fig.
2 (C). The most frequent values estimated by the symbolic-numeric method were found
in the bin including the correct value, 10.0, while the values obtained by RCGAs were
widely distributed. In Fig. 2 (B), our symbolic-numeric method correctly estimated the
parameter values (k31 = 0.1), but RCGAs definitely failed. In summary, the parameter
values estimated by our method were narrowly distributed in the bin including the correct
values in all cases, but those generated by RCGAs were widely distributed.

2.5 Further Remarks
Our symbolic-numeric method correctly estimated the parameter values from the mea-

sured data of one molecule, while by RCGAs failed. This clearly indicates that the ability
of our method for estimating the parameter values was far superior to that of RCGAs.
Although the present study focused on a simple model, our method is a feasible approach
for parameter estimation in network dynamics including unmeasured variables.

Finally, we discuss further application possibilities of our method. As indicated in
3.2, the differential elimination is not dependent on linearity, but shows its power in the
nonlinear system. By the differential elimination, x2 in the first nonlinear equation of eq.
10 in 3.2 can be eliminated in the first equation of eq. 11. Thus, our method has different
types of differential equations in its application. Another possibility of our method is
application to network inference without known structure. Since the present method is
designed with the assumption of known network structure, the application range of our
method to network inference is naturally restricted. However, our method can select the
most possible network structure among the networks with similar structures. Indeed, we
designed a similar procedure for evaluating the network structures with the measured data
[8]. In our previous approach, we adopted the transformation of a system of differential
equations into the equivalent system of algebraic equations by Laplace transformation.
In this case, the system must be linear, due to the Laplace transformation. Furthermore,
the numeric optimization in the previous approach frequently faces difficulties, due to the
existence of the pole in the Laplace domain. In contrast, the above pitfalls are overcome in
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Figure 2: Histograms of estimated parameters. (A) Histogram of estimated k21. (B)
Histogram of estimated k31. (C) Histogram of estimated k41. In these histograms, the
abscissa represents the bin. The bin range for (A) and (B) is 0.01, and that for (C) is 0.1.
The ordinate shows the ratio of frequency (frequency divided by the number of estimated
parameter sets (N). N for RCGAs was 132, and that for the symbolic-numeric method
was 90). Black bars represent the ratio of frequency for the symbolic-numeric method.
White bars represent that for the RCGAs.
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the present method, by the combination of genetic algorithm and differential elimination.
In the near future, the application of the present method to various forms of networks
will be presented to further investigate the merits and pitfalls of our method, in terms of
parameter optimization and model selection.

3 Methods
3.1 Real-Coded Genetic Algorithms

The Genetic Algorithm is a well-known parameter optimization framework, which
is inspired by the evolutionary process of biology [6, 7]. We have applied an efficient
computational technique based on RCGAs as a nonlinear numerical optimization method
[9], by the combination of unimodal normal distribution crossover (UNDX) [10] and
minimal generation gap (MGG) [11]. The generation-alternations are repeated until either
the value of the objective function E becomes less than a given threshold (we called
this threshold the error allowance on RCGAs) or the number of generation-alternation
iterations reaches a given threshold of maximum generation counts.

The general procedure for a typical or conventional GA is as follows:

1. Generation of Initial Population Generate initial population randomly.
2. Selection for Reproduction Select individuals in population for the Reproduction

step according to the generation-alternation model.
3. Reproduction Generate offspring by the crossover operator from the parent individ-

uals selected in step 2.
4. Selection Evaluate the fitness of each individual and select individuals for survival

(see also 2.3).
5. Repeat the procedure between steps 2 to 4 until a certain condition for termination

is satisfied.

3.2 Differential Elimination
Differential algebra aims at studying differential equations from a purely algebraic

point of view [12, 13]. The differential elimination theory is a sub theory of differential
algebra [3], based on Rosenfeld-Gröbner [4]. The differential elimination process rewrites
the inputted system of differential equations to another equivalent system according to
ranking (order of terms). Here, we provide an example of the differential elimination
process, as shown below, according to Boulier [3, 5].

Assume a system of parametric ordinary differential equations with two variables, x1
and x2, and then build the following equations,

ẋ1 = −k12x1 + k21x2 −
Vex1

ke + x1
(10)

ẋ2 = k12x1 − k21x2

where k12, k21, ke and Ve are some constants. The differential elimination, then produces
the following two equations equivalent to the above system.

ẍ1(x1 + ke)
2 +(k12 + k21)ẋ1(x1 + ke)

2 +Veẋ1ke + k21Vex1(x1 + xe) = 0 (11)
ẋ1(ke + x1)+ k21x2

1 +(k12 +Ve)x1 − k21(ke + x1)x2 = 0
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The first equation in eq. 11 is composed of x1, its derivatives, and the parameters obtained
by eliminating x2, and the second one is composed of x1, its derivatives, the parameters,
and x2. Note that x2 can be expressed by x1, its derivatives, and the parameters in the
second equation.

All of the symbolic computations for the differential elimination were performed us-
ing the diffalg package of MAPLE 10.

3.3 Combination of RCGAs and Differential Elimination
In general, the typical objective function for evaluating the reproducibility of an ex-

perimentally observed time-series for a parameter set is the total relative error, E, such
as eq. 6. The parameter set is then estimated when the total relative error falls below a
given threshold. However, the immense searching space of parameter values frequently
prohibits the correct parameter estimation. To overcome this problem, we introduce the
constraints derived by differential elimination into the objective function. In the present
study, our strategy is to reduce the immense searching space, by introducing constraints
between the estimated parameters derived from differential elimination, C, into the ob-
jective function for the Real-Coded Genetic Algorithm, which is a well-known heuristic
numerical optimizer, i.e.,

ObjectiveFunction = αE +(1−α)C (12)

where α is a weighting factor in the objective function. Here, α was defined such that E
and C were equally weighted.
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