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Abstract In this paper, the problem of global synchronization for a class of general delayed dy-
namical networks with non-symmetric coupling is dealt with. The approach taken in the paper is
to estimate the error state variable between any two models of the networks directly. By using a
Lyapunov-Krasovskii function and comparison theorem, some simple and efficient criteria for the
stability of synchronization manifold are derived. It should be pointed out that no matrix diago-
nalization technique or Kronecker product is involved through derivation of all the synchronization
criteria.
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1 Introduction
Recently synchronization of the delayed dynamical networks with linearly coupled

has gain a lot of attentions of the researchers. The main reason is that the time delay in
signal transition is a vary familiar phenomenon ,also the effect of time delays can induce
complex dynamics of some dynamical systems, such as stability, existence of periodic,
oscillatory ,chaos behaviors and so on. Moreover those time delays often influence the
synchronization motion and the stability of synchronization motion. Also, synchroniza-
tion of delayed dynamical complex networks has been extensively studied due to its the-
oretical importance and practical applications[1-7]. Li and Chen[1] presented a uniform
delayed model and derived some synchronization criteria for both delay- independent and
delay-dependent exponential stability of synchronization state. By using Kronecker prod-
uct and stability theorem, there are many existing studies related to large-scale complex
delayed dynamical networks with symmetric coupling and global synchronization crite-
ria are presented [8-11,17]. In addition, such complex network model with time-varying
delay or distributed delays even with impulsive effects are also discussed [12-16]. More
recently some authors are concerned with synchronization problems of complex networks
with non-symmetric coupling, some synchronization criteria are also derived[17-18].
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In this paper, the problem of global synchronization for a class of general delayed
dynamical networks with non-symmetric coupling is dealt with. The approach taken in
the paper is to estimate the error state variable between any two models of the networks
directly. By using a Lyapunov-Krasovskii function and comparison theorem, some simple
and efficient criteria for the stability of synchronization manifold are derived. It should
be pointed out that no matrix diagonalization technique or Kronecker product is involved
through derivation of all the synchronization criteria.

2 Preliminaries
Considering a delayed dynamical network with N diffusively coupled identical nodes,

we described the stated equations of the whole network as

ẋi(t) = Axi(t)+
N

∑
k=1

gikΓxk(t − τ)+ f (t,xi(t)), i = 1,2, ⋅ ⋅ ⋅ ,N, (1)

where xi(t) = (xi1(t),xi2(t), ⋅ ⋅ ⋅ ,xin(t))N ∈ Rn is the state variable of the ith node.Γ ∈
Mn(R) is the inner-coupling matrix which describe the individual coupling between two
connected nodes of network , τ ≥ 0 is the coupling time delay. gik ∈ R describe the
coupling strength from node k to node i(k ∕= i),gik ≥ 0, f : R×Rn ×Rn → Rn is contin-
uously vector-valued function with respect to the second variable and third variable, and
A ∈ Mn(R) describe the dynamics of an individual node .

Throughout, we assumed that gii =−∑N
k=1,k ∕=i gik, i = 1,2, ⋅ ⋅ ⋅ ,N which imply that the

row sum of matrix G = (gik) ∈ MN(R)are all zero. We always assume that the nonlinear
vector-valued function f satisfy uniformly global Lipschitz condition i.e.,

(H) For any x = (x1,x2, ⋅ ⋅ ⋅ ,xn)
N ∈ Rn,y = (y1,y2, ⋅ ⋅ ⋅ ,yn)

N ∈ Rn and positive definite
matrix P, there exists positive definite matrix D, such that

(x− y)T P[ f (t,x)− f (t,y)]≤ (x− y)T D(x− y). (2)

Applied the existence and uniqueness theorem [2] in functional differential equations
theory, the Eq.(1) has a unique solution with respect to initial condition given by xi(t) =
φi(t)∈C([−τ,0],Rn), where C =C([−τ,0],Rn)is a Banach space of continuous functions
mapping the interval [−τ,0] into Rn with the norm ∥φ∥= sup−τ≤θ≤0 ∣φ(θ)∣.

Now some definitions of with respect to global synchronization are introduced as
follows.

Definition 1. The hyperplane

{(xT
1 (t),x

T
2 (t), ⋅ ⋅ ⋅ ,xT

n (t))
T : xi(t) = x j(t), i, j, ⋅ ⋅ ⋅ ,N}, (3)

is said to the synchronization state of the delayed dynamical network (1).
Obviously, the synchronization state S(t) = (sT (t),sT (t), ⋅ ⋅ ⋅ ,sT (t))T of delayed dy-

namical network (1) satisfies

ṡ(t) = As(t)+ f (t,s(t)). (4)
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Definition 2. Synchronization state S(t) of delayed dynamical network (1) is said to
be globally exponential stable, if there exist constants λ > 0 and K > 0, for all φi(t) ∈
C([−τ,0],Rn) such that

∥ xi(t)− x j(t) ∥≤ Ke−λ (t−t0), i, j = 1,2, ⋅ ⋅ ⋅ ,N, (5)

holds for all t ≥ t0 ,where ∥ ⋅ ∥ is the Euclidean norm.
Lemma 1. For any two n-dimensional vectors x and y, and a positive definite matrix

Q ∈ Mn(R),
xT y+ yT x ≤ xT Q−1x+ yT Qy. (6)

Lemma 2. (Zhou and Chen [11]). Let v(t) > 0 for t ∈ R,τ ∈ [0,+∞) and t0 ∈ R.
Suppose that

v̇(t)≤−av(t)+b sup
t−τ≤s≤t

v(s), (7)

for t > t0. If a > b > 0, then there exist constants K > 0 and λ > 0, such that

v(t)≤ Ke−λ (t−t0), f ort > t0. (8)

3 Synchronization in delayed dynamical networks
Theorem 1. Assume that (H) holds, and there exist two n×n positive definite matrix

P,Q ≻ 0, such that

PA+AT P+D− (gii +g j j)PΓQΓT P+(N −1)(gi j +g ji)Q−1 ⪯−εIn, (9)

Then the synchronization state S(t) of the delayed networks (1) is exponentially stable.
Proof. Define Lyapunov-Krasovskii functions as follows

Vi j(t) = (xi(t)− x j(t))T P(xi(t)− x j(t))

+(N −1)(gi j +g ji)
∫ t

t−τ
(xi(s)− x j(s))T Q−1(xi(s)− x j(s))ds, i, j = 1,2, ⋅ ⋅ ⋅ ,N,

Denote V (t) = ∑N
i, j=1 Vi j(t).

The derivative of Vi j(t) along system (1) is

V̇i j(t) = (xi(t)− x j(t))T (PA+AT P)(xi(t)− x j(t))+(xi(t)− x j(t))T P[ f (t,xi(t))− f (t,x j(t))]

+ [ f (t,xi(t))− f (t,x j(t))]T P(xi(t)− x j(t))+(xi(t)− x j(t))T P
N

∑
k=1

(gik −g jk)Γxk(t − τ)

+
N

∑
k=1

(gik −g jk)x
T
k (t − τ)ΓT P(xi(t)− x j(t))+(N −1)(gi j +g ji)(xi(t)− x j(t))T Q−1

(xi(t)− x j(t))− (N −1)(gi j +g ji)(xi(t − τ)− x j(t − τ))T Q−1(xi(t − τ)− x j(t − τ)).

V̇ (t) = ∑N
i, j=1 V̇i j(t).
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Let

σ1(t) =
N

∑
i, j=1

(xi(t)− x j(t))T P
N

∑
k=1

(gik −g jk)Γxk(t − τ), (10)

σ2(t) =
N

∑
i, j=1

N

∑
k=1

(gik −g jk)xT
k (t − τ)ΓT P(xi(t)− x j(t)). (11)

Then

σ1(t) = 2
N

∑
i,k=1

[Ngik − (
N

∑
j=1

g jk)]xT
i (t)PΓxk(t − τ)

= 2
N

∑
i, j,k=1

g jk(x j(t)− xi(t))T PΓ(xk(t − τ)− x j(t − τ)).

Similarly,

σ2(t) = 2
N

∑
i, j,k=1

g jk(xk(t − τ)− x j(t − τ))T ΓT P(x j(t)− xi(t)).

Applied lemma 1 and ∑N
k=1 g jk = 0, j = 1,2, ⋅ ⋅ ⋅ ,N, Then

σ1(t)+σ2(t) ≤ 2
N

∑
i=1

N

∑
k=1

N

∑
j=1, j ∕=i, j ∕=k

g jk[(xi(t)− x j(t))T PΓQΓT P(xi(t)− x j(t))

+(xk(t − τ)− x j(t − τ))T Q−1(xk(t − τ)− x j(t − τ))]

= 2
N

∑
i, j=1

(
N

∑
k=1,k ∕= j

g jk)(xi(t)− x j(t))T PΓQΓT P(xi(t)− x j(t))

+ 2
N

∑
k, j=1

(
N

∑
i=1,i ∕= j

g jk)(xk(t − τ)− x j(t − τ))T Q−1(xk(t − τ)− x j(t − τ))

= −
N

∑
i, j=1

(gii +g j j)(xi(t)− x j(t))T PΓQΓT P(xi(t)− x j(t))

+ (N −1)
N

∑
k, j=1

(g jk +gk j)(xk(t − τ)− x j(t − τ))T Q−1(xk(t − τ)− x j(t − τ)).

From the condition (H),

N

∑
i, j=1

{(xi(t)− x j(t))T P[ f (t,xi(t))− f (t,x j(t))]+ [ f (t,xi(t))− f (t,x j(t))]T P(xi(t)− x j(t))}

≤
N

∑
i, j=1

(xi(t)− x j(t))T D(xi(t)− x j(t)).
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From (4),(5),(10),(11), it is easy to obtain,

V̇ (t) ≤
N

∑
i, j=1

(xi(t)− x j(t))T (PA+AT P+D− (gii +g j j)PΓQΓT P

+(N −1)(gi j +g ji)Q−1)(xi(t)− x j(t))

≤ −ε
N

∑
i, j=1

(xi(t)− x j(t))T (xi(t)− x j(t)).

It then follows that the synchronization state S(t) of the delayed network (1) is expo-
nentially stable.

Theorem 2. Assume that (H) holds, and there exist n× n positive definite matrix
P ≻ 0 and a positive constant β , such that

PA+AT P+D− (gii +g j j)PΓP−1ΓT P ⪯−βP, i, j = 1,2, ⋅ ⋅ ⋅ ,N, (12)

and

τ <
β −2(N −1)ḡ

(N −1)ḡ(1+2[β 2 +2(N −1)2ḡ2])
, (13)

Then the synchronization state S(t) of the delayed networks (1) is exponentially stable.
Proof. Define

W1 =
N

∑
i, j=1

(xi(t)− x j(t))T P(xi(t)− x j(t)),P = RT R (14)

By using the proof of theorem 1,

Ẇ1(t) ≤
N

∑
i, j=1

(xi(t)− x j(t))T (PA+AT P+D− (gii +g j j)PΓP−1ΓT P)(xi(t)− x j(t))

+(N −1)
N

∑
i, j=1

(g ji +gi j)(xi(t − τ)− x j(t − τ))T P(xi(t − τ)− x j(t − τ))

≤ −βW1(t)+(N −1)ḡW1(t − τ),

where 2ḡ = max1≤i, j≤N,i ∕= j(g ji +gi j)> 0.
Let W =W (t)(t ≥ t0) be the solution of following initial value problem

Ẇ (t) =−βW (t)+2(N −1)ḡW (t − τ),W (t) =W1(t), t ∈ [t0 − τ, t0] (15)

By using comparison theorem of differential equations,W1(t)≤W (t), for t ≥ t0.
Rewrite equation (15) as

Ẇ (t) =−(β −2(N −1)ḡ)W (t)−2(N −1)ḡ
∫ t

t−τ
Ẇ (s)ds,W (t) =W1(t), t ∈ [t0 − τ, t0]

(16)
Denote W2(t) = 1

2W 2(t)
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Then

Ẇ2(t) = −(β −2(N −1)ḡ)W 2(t)−2(N −1)ḡW (t)
∫ t

t−τ
Ẇ (s)ds

≤ −(β −2(N −1)ḡ)W 2(t)+(N −1)ḡ
∫ t

t−τ
[W 2(t)+Ẇ 2(s)]ds

≤ −(β −2(N −1)ḡ− (N −1)ḡτ)W 2(t)+(N −1)ḡτ sup
t−τ≤s≤t

Ẇ 2(s)

= −(β −2(N −1)ḡ− (N −1)ḡτ)W 2(t)

+(N −1)ḡτ sup
t−τ≤s≤t

[−βW (s)+2(N −1)ḡW (s− τ)]2

≤ −(β −2(N −1)ḡ− (N −1)ḡτ)W 2(t)+2(N −1)ḡτ[β 2 +2(N −1)2ḡ2] sup
t−2τ≤s≤t

W 2(s).

It follows that,

Ẇ2(t) =−2(β −2(N −1)ḡ− (N −1)ḡτ)W2(t)+4(N −1)ḡτ[β 2 +2(N −1)2ḡ2] sup
t−2τ≤s≤t

W2(s).

From lemma 3,W2(t) is exponentially approach to zero,therefore,the synchronization
state S(t) of the delayed networks (1) is exponentially stable.
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