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Abstract Proteins frequently bind together in pairs or larger complexes to take part in biological
processes. Understanding such protein functions and biological processes in a cell across the entire
genome is an important goal with diverse implications about protein function. In this paper, we
propose a method to detect protein-protein interaction (PPI) based on sequence neighboring infor-
mation and support vector machine (SVM). When applied on the currently available protein-protein
interaction data for the yeast Saccharomyces cerevisiae, it yields a predictive accuracy of 87.98%.
It is further evaluated on an independent PPIs with the test accuracy of 79.05%, which delivered the
proposed method reasonable and promising.
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1 Introduction

Detecting protein-protein interactions (PPIs) is a central problem in computational
biology and aberrant such interactions may have implicated in a number of neurological
disorders. As a result, the prediction of protein-protein interactions has recently received
considerable attention from biologist around the globe. So many computational methods
have been developed to facilitate the identification of novel PPIs. In recent years, many
experimental techniques have been proposed for identifying the interaction of protein
pairs. Most of these techniques that use protein properties for their ability to interact
such as protein sequences [26], primary structures of proteins for this prediction [12]
have therefore attracted considerable interest. Because experimental methods are time-
consuming and expensive, current PPI pairs obtained from experiments only cover a small
fraction of the complete PPI networks [10]. Hence, it is of great practical significance to
develop the reliable computational methods to facilitate the identification of PPIs.

Most of the recent works focus on employing the protein domain knowledge to predict
the protein-protein interaction[3, 9, 13, 17, 18, 24]. However, none of them consider
all the sequence information to predict the protein-protein interaction. We understand
that protein domains are highly informative for predicting protein-protein interaction as
it reflects the potential structural relationships between proteins, however, other sequence
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parts (not currying any domain knowledge) may contribute to the information by showing
how different two proteins are.

This paper presents an approach to pairwise protein interaction based on physico-
chemical properties of amino acids aimed at addressing the ability of protein-protein
interaction prediction. The interactions usually occur in the discontinuous amino acids
segments in the sequence, and the information of these interactions may be able to further
improve the prediction ability of the existing sequence-based methods. So the proposed
method takes neighboring effect into account and makes it possible to discover patterns
that run through entire sequences. The amino acid residues were translated into numerical
values and then these numerical sequences were analyzed by SVM.

2 Materials and Method

2.1 Data set construction

The yeast organism is chosen primarily because there is more information about yeast
protein interactions than about any other organism. For the interacting pair, it is simply
obtained from the Database of Interacting Protein (DIP) [25]. The PPI dataset of budding
yeast (Saccharomyces cerevisiae) is retrieved from DIP database in February 2007. The
reliability of this subset has been tested by expression profile reliability and paralogous
verification method. After removed the protein pairs that contained a protein less than 60
amino acids, the collected subset contained 5926 interactions pairs.

Since obtaining identified and standard non-interacting proteins pairs remains to be
the concern of all researchers working in predicting protein-protein interaction, three
mainly strategies for constructing negative data set are used in order to compare the
effects of different training data sets on the performance. The first strategy is that the
non-interacting pairs are generated by randomly pairing proteins appeared in the positive
data set [20]. The second is based on such an assumption that proteins occupying different
subcellular localizations do not interact. And the third strategy is used for creating non-
interacting pairs composed of artificial protein sequences. Therefore, in our case we use
a random method to generate proteins pairs, and then delete all pairs that appear in DIP.
Consequently, we get the data set contained 11852 pairs, 5926 pairs in positive set and
5926 pairs in negative set. This is acceptable for the purposes of comparing the feature
representation since the resulting inaccuracy will be approximately uniform with respect
to each feature representation [1].

2.2 Support vector machine(SVM)

To discriminate between interacting and non interacting protein pairs, we employed
SVM. SVM [7],[23] is a powerful classification algorithm and well suited the given task.
It addresses the general problem of learning to discriminate between positive and negative
members of a given class of n-dimensional vectors.The algorithm operates by mapping
the given training set into a possibly high-dimensional feature space and attempting to
learn a separating hyperplane between the positive and the negative examples for possible
maximization of the margin between them [27]. The margin corresponds to the distance
between the points residing on the two edges of the hyperplane. Having found such a
plane, the SVM can then predict the classification of an unlabeled example. In fact, much
of the SVM’s power comes from its criterion for selecting a separating plane when many
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candidate planes exist: the SVM chooses the plane that maintains a maximum margin
from any point in the training set [16]. SVM classifiers do not require any complex
parameters to be tuned and optimized, and they exhibit a great ability to generalize even
when given a small number of training examples. The only significant parameters to be
tuned are the choice of the kernel function and the soft-margin parameter (capacity or
regularization parameter). The kernel projects the data to higher dimensional space to
increase the computational ability.

To describe an SVM precisely, suppose the data are given as pairs {(x;,y;)} C R" X
{#£1}, and the classifiers created by SVM algorithm are sequence patterns that can only
give binary answers. In other words, given a sequence, each pattern answers either "yes’
(1) or ’no’ (-1), as to whether the pattern matches parts of the sequence or not. Using
this notation an SVM assumes the form f(x) = Y; oyik(x;,x) + b, where f: R" — Ris a
decision function (x belongs to class 1 if f(x) is greater than some threshold 7, or to class
-1 otherwise), k : R" X R* — R is a kernel function, otherwise known as a dot product
in some vector space, and the constants b and ¢ are obtained by solving a quadratic
programming problem (see [4] for details). The threshold 7 is typically 0, although it may
be varied to obtain classifiers that are more or less accurate on positive predictions.

2.3 Feature extraction and measure

One of the main challenges in using SVMs for the prediction of PPIs in genome
sequence is a suitable encoding of the genome sequences information in some vector
space and requires a fixed number of inputs for training. However, there are often unequal
length vectors because of protein sequences with different lengths. So a transformation
is proposed that converts protein sequence into fixed-dimensional representative feature
vectors, where each feature records the correlation of amino acids to the protein sequences
of interest. These features are then used in conjunction with SVM to predict the possible
interactions between proteins.

According to the above consideration, here physicochemical properties of amino acids
were collected to reflected the interaction whenever possible and they are hydrophobicity
[22], hydrophicility [11], volunes of side chains of amino acids [14], polarity [8], polar-
izability [5], solvent-accessible surface area [19] and net charge index of side chains of
amino acids [28], respectively. The value of the seven physicochemical descriptors for
each amino acid were normalized to zero mean and unit standard deviation.

In this paper, given a protein sequence P, a score describe the related interactions
between residues. After translated each protein sequence into seven vectors with each
amino acid by the physicochemical properties, deviations of the vectors X were computed.
Then relation between residues with fixed distance d were calculated by the Equation (1)
throughout the whole protein sequence, where j represents one descriptor, i the position
in the sequence P, n the length of the sequence P. Here, d is the distance between one
residue and its neighbor, a certain number of residues away, L requires to be optimally
chosen.

1 n—d .
Yaj o~ N XX J= 120 Td = 1,2, L (D
i=1
After each protein sequence is represented as a vector V = (dj,d,, -+ ,d7.) by vec-

torizing ¥;; along with rows, there are two approaches to construct the feature vectors to
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represent protein-protein pairs:

2.3.1 Concatenating the score vector

A protein pair (A, B) is represented by concatenating the score vectors V4 and Vp. That
is the input feature vector C4p for a protein pair (A, B) is calculated as follows:

Cap=VsDVp,

where @ is the concatenation operator. We can obtain an additional improvement in the
concatenating vector by enforcing symmetry in the protein-protein order. In other words,
we can make a protein pair (A, B) equivalent to protein pair (B,A). This symmetry is
easily achieved by training and testing on both C4p and Cpy4, and reporting the average
predicted results in numerical experiments.

2.3.2 Distance on protein pairs

A protein pair (A, B) is represented by a distance vector. dif = (di —d?)? is used to
measure the distance between protein pair (A, B) with respect to d,ﬁ‘ and df . So the input
feature vector Dyp for a protein pair (A, B) is calculated as follows:

DAB = (d?Bangf" 7d174£)T

According to concatenating and distance operations, if the protein pair (A, B) is inter-
acting it is placed in a positive set, otherwise, it is placed in a negative set.

2.4 Implementation

We use the proposed method to deal with the induced data set contained 11852 pairs
and get the data_file satisfied the following format:

< line >=< target >< feature >:< value > ... < feature >:< value >

where the first entry < target >=[+1| — 1] gives the class labels(PPI or not), < feature >=
[integer] denotes the basis vector’s index in the basis vector set and < value >= [float|

denotes the basis vector’s weight satisfied that the summation of the weight’s square in the

same sequence is equal to 1. Note that the target value and each of the feature/value pairs

are separated by a space character and feature/value pairs MUST be ordered by increasing

feature number. Note again that indices start at 1.

2.5 Evaluation criterions

The performance of system is measured by how well a system can recognize inter-
acting protein pairs. In order to analyze the evaluation measures in protein-protein in-
teraction prediction, sub-sampling test and jackknife test are often used as two cross-
validation methods [6]. Considering the numerous samples used in this work, 10-fold
cross-validation was used to investigate the training set. To be precise, we first divided
the sets of interactions and non-interactions (at random) into 10 roughly equal-sized non-
overlapping subsets. We used each subset in turn as a test set, while we trained our method
on the union of the remaining 9 subsets.

In order to evaluate the model on a positive and negative set of sequences, four statis-
tics (counts) can be defined: the number of true positives (TP), false positives (FP), true
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negatives (TN) and false negatives (FN). These represent the both predicted and ob-
served, predicted but not observed, neither predicted nor observed, and not predicted
but observed, respectively. We evaluated the performance of our classifier by comput-
ing accuracy (TP+TN)/(TP+FP+TN+FN), precision TP/(TP+FP), sensitivity TP/(TP+FN)
and specificity TN/(TN+FP). Furthermore, the other criterions, such as receiver operating
characteristic (ROC)curve [21], AUC(area under the ROC curve) is used.

3 Results and Discussions
3.1 Selecting suitable L

Using large value L will result in more quantities that account for interaction of amino
acids with more distance apart in the sequence, and make the calculation expensive and
time-consuming. However, if the value L is too small, the feature representations will not
be well preformed. After some trials for selecting value L, we find that when L = 25 it
can achieve a better characterization of the protein sequence.

3.2 Comparing the performance of C4p with that of Dsp

After chosen suitable value L, a protein pair was converted into a 350-dimensional
(2 x 25 x 7) vector by concatenating operator with L of 25 amino acids. However,
when distance on the protein pair was used, a protein sequence will be a vector of 175-
dimensional vector. The final data set comprised of 11852 protein pairs,half from the
positive data set and half from the negative data set. Here two-third of the protein pairs
respectively from the positive and negative data set were randomly chosen as the train-
ing set (7900 protein pairs) and the remaining one-thirds were used as the test set (3952
protein pairs).

When the training set and the test set are prepared, we employ SVM to discriminate
between the interacting and non-interacting proteins. SVMs have several advantages over
other classifiers though we do not discuss them here. Instead, we refer to Vapnik [23]
and Bennett and Campbell[2], among hers. To implement the SVMs in this paper, we
used the software library named libsvm 2.89 (http:// www.csie.ntu.edu.tw/ Acjlin/ lib-
svm/) with Gaussian radial basis (RBF) kernel based on the induced data_file. The RBF
kernel is used as it allows pockets of data to be classified which is more powerful way
than just using a linear dot product. Two parameters, the regularization parameter C and
the kernel width parameter y were optimized using a grid search approach. A Python code
which automates the process of SVM application is also available in this library package.
This code tries to find optimal parameters for SVM application using RBF as the kernel
function and returns an accuracy result on the clustering that is created by the SVM clas-
sification. In the numerical experiment, the penalty parameter C = 5 and the RBF kernel
parameter ¥ = 1 which were determined by 10 fold cross validation.

Here, we used operator C4p to represent the protein sequences and compared the per-
formance of the model based on operator C4p with that of the model base on operator
Dyp. From Table 1, we can see that the model based on operation C4p gives good re-
sults with the sensitivity, precision, accuracy and AUC of 90.05%,86.56%,87.98% and
0.863 respectively, whereas for operation Dyp ,84.43%, 76.85% , 81.15% and 0.774 ,re-
spectively. These results imply that SVM with operation C4p has the good generalization
ability in prediction ability of PPIs on yeast.
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Table 1: The performance of proposed methods

TP FN TN  FP | Sensitivity Precision Accuracy | AUC
Cap | 1784 197 1693 278 | 90.05% 86.56% 87.98% | 0.863
Dyp | 1534 283 1673 462 | 84.43% 76.85% 81.15% | 0.774

In addition to observations about specific classifiers, the accuracy, precision and sen-
sitivity are useful for measuring the behavior of a classifier in general. In particular, the
accuracy gives the overall performance of a classifier, the precision gives the percentage
of positive predictions that are actually positive and the sensitivity gives the percentage
of actual positives that are predicted. By looking at the precision and sensitivity statistics,
we can determine if a classifier will identify positives correctly. If a classifier has a high
precision and a low sensitivity, then it is likely to be correct when it makes a positive
prediction, although it will make many false negative predictions. Conversely, a classi-
fier with a low precision and a high sensitivity is likely to identify most true positives,
even though many of its predictions will be false. In some sense, the first classifier is too
conservative while the second is too optimistic.

3.3 Performance on the independent data set

In order to evaluate the practical prediction ability of the final prediction model, a
large independent data set which is generalized by yeast two-hybrid experiments. After
data preprocessing, Among the remaining 10138 protein pairs, 8014 PPIs are correctly
predicted by the prediction model with C4p and the success rate is 79.05%. We gen-
erate the negative set by using the positive data set randomly and get underlying 11012
non-interactions which can be incorporated into the test set. The result shows that the pre-
diction model is able to correctly predict the non-interacting pairs with 74.36% accuracy.
All these results demonstrate that this method is also capable of predicting well.

3.4 Comparing with other existing works

Comparing protein-protein interaction prediction systems with the other existing sys-
tems is always a difficult task. The reason is that, most of the authors used different type
of data, experimental setup, and evaluation measures. In this section we will try to de-
scribe some of the good results achieved so far and compare them to our results. We will
presents some of results achieved with an experimental work similar to ours in terms of
the data used and experimental setup.

Kim et al [13] developed a statistical scoring system to measure the intractability
between protein domains which could be used to predict protein-protein interaction. The
prediction system gives about 50% sensitivity and more than 98% specificity.

Ng et al [17] developed an integrative approach to computationally derive putative
domain interactions from multiple data sources. He reported true positive value of 58.97%
and false positive value of 12.51%, which approximately yields sensitivity of 58.97%,
specificity of 82.5% and accuracy of 73.23%.
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Gomez et al [9] constructed an attraction-repulsion model associated with Pfam do-
mains. The best result achieved in this study was a ROC score of 0.818. It’s clear that our
algorithm is outperformed most of the existing methods with cross-validation accuracy of
84.57% and ROC score reaches 0.8892.

4 Conclusion

Protein-protein interactions are operative at almost every level of cell function, in the
structure of sub-cellular organelles, the transport machinery across the various biologi-
cal membranes, packaging of chromatin, the network of sub-membrane filaments, muscle
contraction, and signal transduction, regulation of gene expression, to name a few. In
this article, the idea is to predict protein-protein interaction through sequence neighbor-
ing information. We have described a novel method that use SVMs, sequence neighbor
information and experimental data to predict PPIs and explored its applicability by ana-
lyzing Saccharomyces cerevisiae. A proposed method is used for generating the score,
which depends only on sequence neighbor information and allow us to perform trans-
forming sequence information into physicochemical properties information. A data set of
11852 yeast PPIs was used to evaluate this prediction model and the prediction accuracy
is 87.98%, which delivered the proposed method reasonable and promising. Our method
also has the advantage of using a principled method (SVMs) to obtain our final classifier
by statistical evaluation. Here we must to claim that more potential new PPIs will be
predicted if we do not exploit too conservative attitudes towards dealing with the data set
and model selection.

Efficient feature construction is important in determining the performance of a pre-
dictive method, thus future work can focus on how to improve feature extraction method,
including optimizing the distance apart throughout the whole sequence. Future work can
also be included to use more efficient and simple on imbalance classification problem
to implement prediction task, such as SVM with an offset [15] and so on. Finally, the
success of applying the proposed method on predicting protein-protein interaction en-
couraged us to plan future directions such as physicochemical properties discovering and
finding related conserve information on the sequence.
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