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Abstract  A conformational epitope is composed of several discontinuous segments as 
antigenic determinants which are spatially close to each other in the three dimensional 
structure. These segments form the antigen which may bind with a specific receptor of the 
immune system, and play an important role in vaccine designs and immuno-biological 
experiments. Though there are two major types of epitopes: linear and conformational 
epitopes, it has been estimated that more than 90% of B-cell epitopes depend on nonsequential 
amino acids and are geometrically clustered due to molecular folding. Therefore, prediction of 
conformational epitopes rather than linear ones becomes an important and challenging task for 
practical applications. In this paper, a novel conformational epitope prediction system was 
developed based on the characteristics of surface rate analysis of side chain atoms, distribution 
of surface curvature attribute, and physicochemical propensity of each surface residue. It is the 
first conformational epitope prediction system based on the combinatorial features of 
curvatures and surface rates of side chain atoms. In this paper,  benchmark datasets were 
employed to train the optimal parameter settings, and thirty extra antigen-antibody complexes 
from three different data resources with verified conformational epitopes were adopted to 
evaluate the prediction accuracy. Comparing with those well-developed tools, our proposed 
method outperformed the others in both aspects of accuracy and efficiency.  For this testing 
dataset, the proposed system achieved an average sensitivity of 39.4%, an average specificity 
of 91.2%, and an average AUC value of 0.69.  

Keywords  conformational epitope, side chain surface rate, surface curvature, 
physicochemical propensity 

1 Introduction 
B-cell epitopes, also known as antigenic determinants, are defined as a part of an 
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antigen which is able to bind with either a specific antibody molecule or a particular 
B-cell receptor to elicit humoral immune response (HIR) [1]. The main purpose of 
predicting B-cell epitopes is to facilitate the synthetic peptide design that can 
replace an antigen in vaccine design to reduce injuries for researchers or 
experimental animals [2]. It is categorized into two major types: linear type, that 
contains a short continuous stretch of amino acid residues, and conformational type, 
that comprises several discontinuous peptides but close in three-dimensional 
structure.  

In previous work, several prediction tools have focused on linear epitope 
prediction and widely provided, such as LEPD [3], BEPITOPE [4], and BEPIPRED 
[5], etc.. However, the number of continuous epitopes (linear epitopes) on native 
proteins had been estimated only 10% from all B-cell epiotpes in past surveys [6]. 
Most of B-cell epitopes are recognized and adopted to form a native conformation 
as a result of conformational epitopes. Therefore, to identify discontinuous epitopes 
becomes a practical and important task for performing synthetic peptide design, 
developing recombinant vaccines, and running specific diagnostic tests. 

Only a few predictors have been designed for identifying discontinuous epitope 
sites in recent years. The conformational epitope predictor (CEP) is one of the first 
methods for identification of discontinuous epitopes which only adopted the 
attributes of geometrical information of protein structures for conformational 
epitope prediction [7]. Discotope predictor developed by Haste Andersen et al. 
applied amino acid statistics and structural surface information to obtain possible 
epitope sites [8]. PEPOP is another predicting method which identified fundamental 
segments composed of continuous surface accessible residues and clustered these 
segments according to their spatial vicinity for enumerating putative epitope 
candidates [9].  Finally, the newly proposed ElliPro utilized the 3-D structural 
information and calculated corresponding protrusion indices to acquire 
discontinuous epitope candidates [10].  

To integrate the advantageous features from previous works and discover 
innovative and important characteristics from predicted conformational epitopes, 
we have proposed a novel algorithm which combined geometry affinity of 
conformational epitopes and physicochemical propensity to reveal the highly 
potential surface residues as conformation epitope sites.  In this study, we have 
analyzed the characteristics of protein antigen surface curvature distribution, 
surface rate of side chains, and effectiveness of chemical propensity/affinity for 
antigen-antibody binding. From the experimental results, our proposed method 
outperformed those existing techniques and provided effective candidates on 
discontinuous epitope prediction. 

2 Material and Method 

2.1 Preparation of training materials and verified data sets 
The training dataset for geometrical feature and chemical propensity analysis 

were collected from a benchmark dataset provided by Discotope [8], which consists 
of 75 antigen-antibody complexes. All these complex protein structures were 
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selected for training the features in this study. The epitope residues from the 
selected protein structures were defined and verified by evaluating each residue in 
the antigen chain within a 4 Å distance with respect to the correspondingly tied 
residue in the bound antibody structure. 

 

 
Figure 1: System configuration for the proposed CE prediction. 

 
To evaluate system performance of the proposed method, we have randomly 

selected 30 antigen-antibody complexes from three different databases: CED [11], 
IEDB [12], and PEPOP [9] datasets. Positions of all detected conformation epitopes 
in these 30 structures depended on the description previously defined in their own 
literatures. 

2.2 Methods 

2.2.1 Algorithms of proposed method 

As shown in Figure 1, in order to achieve the prediction of conformation 
epitopes from a protein structure, the proposed system was constructed by five main 
modules. Each module and its corresponding functions were described as the 
following:  

Step 1: System Initialization: 
The first module parses atom coordinates from a PDB file and performs the 

sampling processes in a 3-D grid space with a default molecular radius. 
Step 2: Surface Extraction: 
Mathematical morphology operations were applied to define the surface rate of 

each atom in a residue. The average surface rates of the set of side chain atoms and 
the set of backbone atoms were calculated individually. Only the side chain atoms 
appeared on the surface of a protein was considered as the possible candidates of 
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predicted conformational epitopes. In this module, a surface rate look-up table of 
epitope residues was constructed and a downsampled set of high surface rate 
residues was provided for further predicting processes. In the meantime, the 
predicting system also analyzed on epitope frequency distribution from the training 
dataset according to side chain surface rates. 

Step 3: Curvature Computation: 
Based on a surface rate filtering process in previous step, a set of downsampled 

amino acid residues was formulated as initial candidates for surface curvature 
analysis. The default settings were obtained according to the training processes on 
benchmark datasets and described in the next section in details. Here we adopted 
the Gaussian surface curvature to evaluate the shape curvatures of each atom on the 
surface. All Gaussian curvatures of initial candidate atoms were sorted and only the 
top 20% atoms with high Gaussian curvatures were selected as seeds for 
neighboring join and clustering processes. 

Step 4: Residue Recovering and Group Clustering: 
According to previous analysis of epitope frequency distribution among 

epitopes, amino acid residues and their surface rates on training dataset, several 
neighboring residues around the seeds could be recovered since they did not possess 
either high surface rates or high Gaussian curvatures and were removed during the 
third step. After the recovering process, the proposed system grouped the 
geometrically closed surface residues into various sets of conformational epitope 
candidates. Step 5: Rearrangement and sorting of the predicted conformational 
epitopes: 

All predicted sets of conformational epitopes were sorted according to it average 
surface rates, physico-chemical antigenicities, and Gaussian surface curvatures. 
Users can easily view these predicted results from a 3D model browser using the 
Jmol java molecular viewer package. 

2.2.2 Definition of surface region: 

Residues located on the surface regions were assumed as the first requirement to 
be considered as candidates of predicted conformational epitopes. Therefore, 
precise definition of surface characteristics is the first important issue to consider. 
In this paper, surface region identification was achieved by employing 
combinations of morphological operators including dilation and erosion operations. 
Mathematical morphology was initially devised as a rigorous theoretic framework 
for the shape and structure analysis of binary image [13]. Based on its superior 
characteristics in describing shape and structural attributes, an efficient and 
effective algorithm can be designed for approaching the precise surface rates of 
each residue in this study. Here, an antigen structure was denoted as ܺ as an object 
in a 3-D grid: 

ܺ ൌ ሼv: ݂ሺvሻ ൌ 1, v ൌ ሺݔ, ,ݕ ሻݖ א Zଷሽ 
where ݂ was called as the characteristic function of ܺ. On the other hand, the 
solvent elements were regarded as the background ܺ௖ which could be defined as 
follows: 

ܺ௖ ൌ ሼv: ݂ሺvሻ ൌ 0, v ൌ ሺݔ, ,ݕ ሻݖ א Zଷሽ 
And then, a sphere of radius of 1.4 Å was taken as a structure element B. The 
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symmetric of B with respect to the origin (0,0,0) was denoted by ܤ௦ and written as  
௦ܤ ൌ ሼെv: v א  ሽܤ

The translation of B by a vector d was then denoted by ܤௗ and performed as 
ௗܤ ൌ ሼv ൅ d: v א  ሽܤ

Three elementary morphological operators were applied for surface region 
calculation and listed below: 

Dilation: ܺ۩ܤ௦ ൌ ሼv א Zଷ: B୴ ת ܺ ്  ሽ׎
Erosion:  ܺ ٓ ௦ܤ ൌ ሼv א Zଷ: B୴ ؿ ܺሽ 
Difference:  ሺܺ۩ܤ௦ሻ െ ሺ ܺ ٓ  ௦ሻܤ

The surface rate of each atom was obtained by calculating the ratio of 
intersected and un-intersected regions between the results of difference operation 
and the original protein surface atoms. Figure 2 depicts an example of surface rate 
calculation step by step. 

 

 
Figure 2: The mathematical morphology operations for surface rate calculation. 

The original structure, dilated, eroded, and differenced regions were displayed and 
utilized to find the surface regions of each residue. 

 

2.2.3 Definition for curvature 

Curvatures of a surface represent local measures of its shape. In this paper, for 
simplicity, analogous measures for discrete curves and surfaces were taken into 
consideration, and represented as polygonal curves and triangulated polyhedral 
surfaces. 

Gaussian (K) and Mean (H) curvatures are the most widely used indicators for 
surface shape classification. Besl has defined the Gaussian and mean curvatures 
[14], and which are calculated from two principal curvatures k1 and k2. The 
Gaussian curvature is defined as the product of the principal curvatures, while the 
mean curvature equals to the arithmetic average of them: 

K ൌ kଵ כ kଶ  and  H ൌ
kଵ ൅ kଶ

2
 

To provide an even more compact description of local surface topology, 
Koenderink defined alternative curvature representation as the shape index (S) and 
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the magnitude of the curvedness (C) [15].  

S ൌ
2
π

כ arctan ൬
kଵ ൅ kଶ

kଵ െ kଶ
൰   and  C ൌ ඨkଵ

ଶ ൅ kଶ
ଶ

2
 

With these various measurements on shapes, we tried to analyze and discover 
the relationship between verified epitope residues and their corresponding 
curvatures.  

Table 1 showed that the proportions of verified epitope residues located nearby 
the top 20% ranked curvature residues within a range distance. The results from 
training dataset revealed that the top 20% ranked residues in terms of Gaussian 
curvatures could be effective to be considered as the initial conformational seeds 
than the other two types of curvature calculation. There are about 66.7% of verified 
epitope residues can be retrieved based on the characteristics of high Gaussian 
curvatures. Figure 3(a) depicted the protein structure of 2JEL:P, in which the red 
elements illustrated the position of verified epitope sites, and the green elements 
represented the downsampled residues for initial analysis; Figure 3(b) showed the 
approximated version of the protein structure by considering the downsampled 
elements only; Figure 3(c) displayed the positions within the top 20% Gaussian 
curvatures in red. It can be clearly observed that the verified epiotpe residues indeed 
possessed high Gaussian curvature characteristics. 

 

 
Figure 3: An example for conformational epiotpe anchor selection. (a) the protein 

structure 2JEL:P;(b) downsampled representation; (c) predicted seeds of 
conformational epitope by Gaussian curvature characteristics.  

 
Table 1: Average percentages of three various curvatures of verified epitope 

residues in the top 20% of curvature features. 
Curvature type Average percentage of verified epitope residues

Gaussian Curvature 66.7% 
SC Curvature 56.9% 

Mean Curvature 54.9% 
 

2.2.4 Residue Recovering and Group Clustering 

Based on the analysis of distribution statistics of verified epitopes and the 
construction of a surface rate look-up table of residues obtained in module 2, the 
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proposed system recovered the neighboring residues which possessed high 
potentialities to be epitope candidates within a radius around the seeds. A default 
radius setting was obtained according to the training processes on benchmark 
datasets and the details were described in the next section. Subsequently, the 
proposed system performed the merging operations on the qualified groups into the 
final conformation epitope candidates by considering the amount of overlapped 
residues. The default setting was three overlapped residues for merging two groups 
into one. Finally, various scores of average surface rates, physicochemical 
antigenicities [18, 19], and Gaussian surface curvatures were considered as the 
sorting criteria for all possible candidates. The number of groups averagely ranged 
from 3 to 5 groups in all benchmark datasets.  All predicted conformational 
epitopes can be easily selected and viewed from a 3D model browser employing the 
Jmol java molecular viewer package. 

 

 
Figure 4: The estimated AUC measurement for various recovering radii. The 

threshold of 9.5 Å provided the best prediction by applying the benchmark data sets 
from Discotope. 

3 Result and Discussion 
In this paper, a novel algorithm was proposed to predict conformational epitopes 

from a protein structure. To verify the performance of the developed system, we have 
employed 30 protein structures with known conformation epitopes as our testing 
dataset. Each predicted conformational epitope from the query protein, we have 
calculated the number of residues of correctly predicted epitopes (TP), the number of 
non-epitope residues incorrectly predicted as epitope residues (FP), the number of 
not predicted as epitopes and indeed non-epitope residues (TN), and the number of 
verified epitope residues not predicted by the system (FN). The following parameters 
were calculated in each prediction for comparison: 

Prediction of Conformational Epitopes 195



Sensitivity = TP (true positive) / [TP (true positive) + FN (false negative)] 
Specificity = TN (true negative) / [TN (true negative) + FP (false positive)] 
AUC - Area under the ROC Curve: a summary measure of the receiver operating 

characteristic (ROC) curve 
To achieve the best performance, we have applied the benchmark dataset from 

Discotope [8] as our training dataset. First of all, these 55 protein structures were 
applied to the prediction system with various recovering radii thresholds ranging 
from 5.0 Å to 15 Å. The estimated AUC measure, (sensitivity + specificity)/2, was 
utilized to each recovering radius setting and shown in Figure 4. It is obvious that the 
threshold of a recovering radius of 9.5 Å for each seed residue providing the best 
performance with respect to the estimated AUC measurement. Hence, the default 
value of the recovering radius of a seed at the forth step was set as 9.5 Å in this study. 
The default curvature threshold was set to 20% because it provided a better 
performance of determining the achors from the training dataset. Once all default 
settings were decided, all other steps were executed and the performance could be 
verified. As we mentioned in the dataset preparation section, 30 protein structures 
from three different databases were adopted for comparison. The ROC curves of the 
proposed system, Discotope and random distribution were shown in Figure 5. From 
the ROC curves, it was clearly demonstrated that our proposed system provided 
better prediction results than the Discotope prediction system. 

 

 
Figure 5: ROC curves of the proposed system and Discotope. 
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