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Abstract This paper focuses on the improvement of the concentration and productivity of 1,3-
propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. A nonlinear
steady-state optimization model is presented according to engineering background. A new lin-
ear approximating method has been developed in view of the feature of the optimization model.
Computer simulation is used for this paper, and the numerical simulation is in accordance with ex-
perimental results. The numerical results illustrate the validity and efficiency of the algorithm. The
results presented in this work can be used as guidelines for choosing proper operating parameters
to get higher concentration or productivity.
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1 Introduction
1,3-Propanediol(1,3-PD) has a wide range of potential uses. Polyesters which use

1,3-PD as a monomer have some excellent characters, such as strong capacity of pig-
mentation, weak capacity of adsorption water, repeating use and so on [14]. Hence the
research on it attracts increasing attention all over the world including DuPont and Shell.
Originally the main technique to produce 1,3-PD is chemical synthesis. However, there
are a lot of drawbacks of this technique such as high cost and serious pollution. Therefore,
the researchers focus on the bioconversion technique. In 1990s, the bio-dissimilation of
glycerol to 1,3-PD by Klebsiella Pneumonicae was proposed, which is a novel technique
with low cost, low pollution, easy operation and so on. Since then, the research on it has
become more and more popular. In 1995, Zeng and Deckwer provided a kinetic model
of the bio-dissimilation of glycerol to 1,3-PD [17]. The phenomena and characteristic
of oscillation and hysteresis were studied in [1, 9]. In 2000, Xiu modified Zeng’s ki-
netic model and used the excess kinetic model to describe the continuous fermentation
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and batch fermentation of bio-dissimilation of glycerol to 1,3-PD [16]. Based on Xiu’s
model, the researchers investigated the parameters identification, stability of equilibrium
and phenomena of oscillation and hysteresis of the kinetic model of continuous fermen-
tation in [3, 6, 7, 8]. On the other hand, Gao proposed a nonlinear impulsive dynamical
system of the fed-batch fermentation of bio-dissimilation [4]. Moreover, some properties
and parameters identification problem of these systems have been studied (see [11, 13]).
However, all the works in [1, 3, 4, 6, 7, 8, 11, 13, 16] are intended to prove the kinetic
models presented can formulate the real fermentation processes preferably. Because of
the high cost of 1,3-PD extraction from aqueous solution, it is necessary to make the
concentration and productivity of 1,3-PD reach a higher lever. Tag obtained a maximum
1,3-PD concentration of 393 mmol ⋅ l−1 at a dilution rate of 0.27 h−1 in continuous culture
( see [10]). A slightly higher 1,3-PD concentration (about 430 mmol ⋅ l−1) was obtained at
a dilution rate of 0.25 h−1[12]. The highest 1,3-PD concentration achieved 638 mmol ⋅ l−1

at a dilution rate of 0.1 h−1 in [10]. However, the author also mentioned that the produc-
tivity decreases sharply as the dilution rate decreases at low values. To the best of our
knowledge, the researchers drew these conclusions from experimental point of view, for
example, 5 experiments in [10]. Based on the kinetic model of continuous fermentation in
[3, 15, 16, 17], we aim to analyze the maximum concentration and productivity of 1,3-PD
by optimizing the control parameters in the mathematical literature. Steady state opera-
tion of engineering systems is generally around a stable equilibrium point. In numerous
books, the standard mathematical definition of an equilibrium point x∗ for the dynamical
system ẋ = f (x) is that it satisfies the equation f (x∗) = 0. But it has been shown that
this definition may be inadequate from an engineering point-of-view. This paper is to
formally propose a definition for kinetic-equilibrium points, which is also intuitively ap-
pealing. The basic motivation for the proposed definition of a kinetic-equilibrium solution
comes from the fact that the concentrations of each substance keep invariable when the
kinetic system reaches its steady state gradually. The amount of material in each steady
state remains the same but the process of Glycerol bioconversion to 1,3-PD continues. It
is meaningful in biochemical engineering when we just need to concern the concentration
of substrate after the kinetic system reaches a steady state. In this paper, we establish an
optimization model when the kinetic system of Glycerol bioconversion to 1,3-PD reaches
a steady state. We present an efficient algorithm according to the feature of the optimiza-
tion problem. The numerical results are in accordance with experimental results. The
optimization model and algorithm can provide theoretical instruction for controllability
of the process of 1,3-PD production by continuous fermentation.

2 Problem description and mathematical model
In a continuous fermentation of glycerol bioconversion to 1,3-PD by Klebsiella Pneu-

monicae, glycerol is added to the reactor continuously, the aqueous solution in reactor
pours out at the same rate and the volume of the aqueous solution keeps constant. Ac-
cording to the experimental process, we assume that
(H1) The concentration of reactants are uniform in reactor. Time delay and nonuniform
space distribution are ignored.
(H2) During the continuous fermentation, the substrates added into the reactor only in-
clude glycerol and alkali, and the aqueous solution is exported by the dilution rate.
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Let x(t)∈R5 be a state vector whose components denote the concentration of biomass,
glycerol, 1,3-PD, acetate and ethanol at t in reactor, respectively. Let u=(u1,u2)

T ∈R2 be
the control vector, the components of which are glycerol concentration in feed and dilution
rate. The control domain is Uad = [100,2100]× [0.01,0.67]. Under the assumptions
above, the nonlinear dynamical system which describes the continuous fermentation of
glycerol to 1,3-PD is given in [3, 15, 16, 17] as follows:

⎧
⎨
⎩

ẋ1 = (µ −u2)x1,
ẋ2 = u2(u1 − x2)−q2x1,
ẋi = qix1 −u2xi, i = 3,4,5,
xt0 = x0,

(1)

where the coefficients µ , qi, i = 2,3,4,5 are expressed by the following equations

µ = µm
x2(t)

x2(t)+Ks

5

∏
j=2

(1− x j(t)
x∗j

),

q2 = m2 +
µ
Y2

+△2
x2(t)

x2(t)+ k2
,

q3 = m3 +µY3 +△3
x2(t)

x2(t)+ k3
,

q4 = m4 +µY4 +△4
x2(t)

x2(t)+ k4
,

q5 = q2(
b1

c1 +u2x2(t)
+

b2

c2 +u2x2(t)
).

Under anaerobic conditions at 37 ∘C and PH 7.0, µm and Ks are the maximum growth
rate (0.67 h−1) and saturation constant (0.28 mmol ⋅ l−1). The critical concentrations are
x∗1 =10 g ⋅ l−1 for biomass, x∗2 = 2039 mmol ⋅ l−1 for glycerol, x∗3 =939.5 mmol ⋅ l−1 for
1,3-PD, x∗4 = 1026 mmol ⋅ l−1 for acetate, and x∗5 = 360.9 mmol ⋅ l−1 for ethanol.

We adopt the results after parameters identification in [3]. Some parameters’ values
of the system are b1 = 0.025,b2 = 5.18,c1 = 0.06,c2 = 50.45. The other parameters see
table 1.

Table 1: Value of parameters
mi Yi △i ki

i = 2 2.1854 0.0082 31.2328 11.43
i = 3 -2.2942 75.447 24.2336 15.50
i = 4 -1.345 30.8599 5.0099 85.71

Let Λ := [0,x∗1]× [100,x∗1]× [0,x∗3]× [0,x∗4]× [0,x∗5] and

f (x,u) := ((µ −u2)x1,u2(u1 − x2)−q2x1,

q3x1 −u2x3,q4x1 −u2x4,q5x1 −u2x5),(x,u) ∈ Λ×Uad .
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When the kinetic system reaches its steady state at some time, the concentrations of each
substance is invariable. Equilibrium point at a fixed dilution and an given substrate con-
centration can be obtained by letting the right hand of Eq.(1) be zero, namely, f (x,u) = 0.
The equilibrium solution is independent of the initial condition, which enables us to in-
troduce the following definition.
Definition 1. The general solution x(t) = x(t, t0,x0,u) of Eq.(1) is said to be kinetic-
equilibrious if there exists a t f > t0 such that f (x(t),u) = 0, t ≥ t f .

The objective function is the weighted sum of the concentration and productivity of
1,3-PD relative to the kinetic-equilibrious solutions, that is

ϕ(x,u) := µ1x3 +µ2u2x3.

where µ1, µ2 are weighting scalars and x is a kinetic-equilibrious solution. So we establish
the nonlinear programming model of Glycerol Bioconversion to 1,3-PD in continuous
culture:

max ϕ(x,u)
s.t. f (x,u) = 0

(x,u) ∈ Λ×Uad

3 Optimization algorithm
We use J(x,u) to denote the Jacobian matrix of the constraints, that is,

J(x,u) = (∇ f1,∇ f2,∇ f3,∇ f4,∇ f5)
T ∈ R5×7.

Assume that (xk,uk) is a feasible point. The nonlinear programming model is converted
to the following model by linear approximation method.

max ϕ(x,u)≈ ϕ(xk,uk)+∇ϕ(xk,uk)T d

s.t. J(xk,uk)d = 0
(xk,uk)+d ∈ Λ×Uad

The linear approximation method may have a greater deviation, which can’t guarantee
that the iterative sequences satisfy all the constraints. So we need to assess and modify
the iterative point to make it satisfy the constraints and guarantee the ascent of objective
function. Moreover, the choice of initial point determines how fast the iterative sequences
converge to a local optimal solution, so we use uniform design algorithm to generate the
initial feasible points. The uniform designs proposed by Fang scatter points uniformly
over the experimental domain [2]. They have the advantage of providing a good represen-
tation of the experimental domain with fewer runs. Computer experiments using uniform
designs have attracted considerable attention in recent years [5]. Traditionally the uni-
form designs were generated by so-called good lattice point method, cutting method and
resolvable balanced incomplete block designs etc.

Since the objective function has only two variables, we can compute the gradient
of objective function as the steepest ascent direction. The homogeneous linear system
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J(x,u)d = 0 with 5 equations in 7 unknowns has a nontrivial solution. Since rank(J(x,u))
≤ 5, we can choose the components d3,d7 of d to be the ascent direction of objective
function( gradient direction). Then we decides how far to move along that direction to get
the new feasible point. In order to improve the convergence rate, we use an convergence
factor such that the ascent degree of objective function is increased.

The basic steps of the algorithm are given as follows.
Step 1. Given the radius of convergence of Taylor expansion δ , convergence factor

α , accuracy ε > 0, terminal condition σ ; generate m initial pairs (x1
3,u

1
2) ∈ R2 in feasible

domain by good lattice point method and let i = 1,k = 1.
Step 2. Solve the eqations f (x,u) = 0 to get iterative point (xk,uk) satisfying all the

constraints.
Step 3. Choose dk

3 = δ (µ1 + µ2uk
2),d

k
7 = δ µ2xk

3 and solve the linear equations
J(xk,uk)dk = 0 to get the search direction dk.

Step 4. Let x̃k
j := xk

j +dk
j , j = 1, ⋅ ⋅ ⋅ ,5; ũk

j := uk
j +dk

j+5, j = 1,2. If f (x̃k, ũk)< ε and
(x̃k, ũk) ∈ Λ×Uad , go to Step 5; else, go to Step 8.

Step 5. Let dk := αdk, x̃k
j := xk

j + dk
j , j = 1, ⋅ ⋅ ⋅ ,5; ũk

j := uk
j + dk

j+5, j = 1,2. go to
step 6.

Step 6. If f (x̃k, ũk)< ε and (x̃k, ũk)∈Λ×Uad , go to Step 5; else, let x̃k
j := xk

j −dk
j , j =

1, ⋅ ⋅ ⋅ ,5; ũk
j := uk

j −dk
j+5, j = 1,2, go to Step 7.

Step 7. Let xk+1
3 := x̃k

3, uk+1
2 := ũk

2 and k := k+1, go to Step 2.
Step 8. If δ < σ , output (xk,uk) and ϕ(xk,uk), i:=i+1, go to Step 9; else, let δ := βδ ,

go to Step 3.
Step 9. If i < m, go to Step 2; else, output all the local optimal solutions.

4 Numerical results and conclusions
According to the optimization model and the algorithm mentioned above, we have

programmed the procedure by Mathematica 5 and applied it to the numerical simulation.
By comparison of a large quantity of calculation results, we found that the optimal solu-
tion doesn’t exist if the value of initial point (x1

3,u
1
2) is too big. It is reasonable because the

constraint equation can’t be satisfied, which also can be seen from Table 2 and Table 3.
But we can obtain the local optimal solutions if (x1

3,u
1
2) ∈ [0,281.85]× [0.01,0.34] gener-

ated by uniform design algorithm. To compare with the existing results, we mainly choose
two extreme of weight scalars. We choose 100 initial points in [0,281.85]× [0.01,0.34]
by good lattice point method and get 100 local solutions. These solutions are not exactly
the same because of the precision of computing, but we can classify them into four classes
or so according to the value of objective function, each of which distribute densely so that
can be viewed as one optimal solution.

To compared with Figure 4 in [10], We choose µ1 = 0,µ2 = 1 to get maximal produc-
tivity of 1,3-PD at steady state. The optimal value in Table 2 is close to the experimental
results and theoretical maximum. The errors between our computational results and the
theoretical maximum in [10] is less than 10%, which satisfy the experimental demand
well.

Next we choose µ1 = 1,µ2 = 0 to compare the maximal concentration of 1,3-PD with
the results in [10, 12] at steady state. We get the maximal 1.3-PD concentration of 440
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Table 2: Optimal solutions when µ1 = 0,µ2 = 1
result1 result2 result3 result4

u1 524.806 463.844 450.658 459.54
u2 0.30769 0.30566 0.30527 0.29334
x1 1.97538 1.92421 1.89755 1.91508
x2 61.0017 95.8269 117.75 139.328
x3 425.501 425.983 423.861 438.441
x4 65.7424 67.6441 68.3169 70.6921
x5 28.7851 24.889 22.8208 22.3228
ϕ = u2x3 132.326 131.505 130.687 129.808

mmol ⋅ l−1 approximately at a dilution rate of 0.29 h−1 or so. The concentrations of each
components are listed in Table 3.

Table 3: Optimal solutions when µ1 = 1,µ2 = 0
result1 result2 result3 result4

u1 459.54 477.881 460.033 469.854
u2 0.293344 0.286752 0.295097 0.291444
x1 1.91508 1.96036 1.91845 1.94258
x2 139.328 118.501 130.897 120.631
ϕ = x3 438.441 451.125 437.051 443.874
x4 70.692 71.2973 70.2582 24.1318
x5 22.3228 24.8774 22.8188 22.3228

The foregoing examples illustrate very nicely the power of optimization techniques in
seeking the optimal control parameters. It is worth mentioning that we have tried genetic
algorithm and penalty function method before we conceived of this new method. Because
of the equality constraints of great complexity, these two methods are noneffective, even
can’t generate feasible iterative points. So the new algorithm is efficient and robust to
solve the nonlinear programming problem. Future work will focus on the the stability
analysis of kinetic-equilibrious solutions.
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