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Abstract This paper proposes a novel method for comparing biological networks. In the proposed
method, an original network structure is compressed by iteratively contracting identical edges.
Then, the similarity of two networks is measured by a compression ratio of the concatenated net-
works. The proposed method is applied to comparison of metabolic networks of H. sapiens, M.
musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis. The re-
sults suggest that our method could efficiently measure the similarities between metabolic networks
adequately.

Keywords Metabolic Networks; Graph Compression; Data Compression; Network Comparison;
Morgan Index

1 Introduction
Comparison of various kinds of biological data is one of the central problems in bioin-

formatics and systems biology. Methods for comparison of DNA and/or protein sequences
have been extensively studied and have been applied to analyses of real sequence data
quite successfully. Due to increased interests in systems biology, extensive studies have
recently been done on comparison of biological networks.

For comparison of metabolic networks, Ogata et al. developed a method based on
clustering [12], Tohsato et al. extended a multiple sequence alignment technique to mul-
tiple alignment of metabolic pathways using a scoring scheme based on EC (Enzyme
Commission) numbers [16], Pinter et al. applied a tree matching technique to alignment
of metabolic pathways [14], and Wernicke and Rasche developed a simple backtracking
algorithm utilizing the local diversity property [17]. For comparison of protein-protein
interaction networks, Kelley et al. developed PathBlast using dynamic programming [5],
Liang et al. developed NetAlign using a clique-based method for computing maximal
common subgraphs [10], Li et al. developed MNAligner using integer quadratic pro-
gramming [9], Singh et al. developed IsoRank algorithm based on Google’s PageRank
method [15], and Zaslavskiy et al. developed a gradient ascent-based method and a mes-
sage passing-based method [19].
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On the other hand, data compression methods have been applied to comparison of
large sequence data [6, 8] and protein structure data [3, 7]. Since it is still difficult to
compare global structures of large biological networks and data compression-based meth-
ods can be applied to comparison of large-scale sequence data, it is reasonable to try to
apply data compression methods to comparison of biological networks. In this paper, we
propose such a method.

In order to apply data compression to biological networks, data compression methods
for graphs are required. For compression of graphs, Adler and Mitzenmacher developed
a method based of Huffman coding of vertices [1], Peshkin developed GRAPHITOUR
based on iterative contractions of identical edges [13], and Cook and Holder developed
SUBDUE based on contraction of frequent subgraphs and MDL (minimum description
length) principle [2], which was further extended to EDIF for lossless compression by
Yang et al. [18] However, the method by Adler and Mitzenmacher does not seem to be
useful for comparison of networks because it does not make much use of structural infor-
mation. In GRAPHITOUR, the uniqueness of compression results is not guaranteed be-
cause there is some ambiguity in selection of overlapping edges (isomorphic graphs may
be differently compressed depending on the orderings of vertices in input data), which
is not suitable for comparison of network structures. This point is also unclear in EGIF
and SUBDUE. Therefore, we develop in this paper a novel graph compression method
for which it is guaranteed that two isomorphic graphs are compressed in the same way.

Using this compression method, we measure the similarity of two networks by means
of the universal similarity metric (USM) proposed by Li et al. [8] USM is defined using
Kolmogorov complexity which represents the amount of information contained in data,
and is obtained by removing redundant parts maximally. Therefore, Kolmogorov com-
plexities are approximated by compression sizes.

We apply the proposed method to comparison of metabolic networks. The results
of hierarchical clustering for several organisms suggest that the proposed method could
measure the similarities between metabolic networks adequately.

2 Graph Compression Method
Since our proposed method is based on GRAPHITOUR, we briefly review the GRAPHI-

TOUR algorithm [13]. GRAPHITOUR is based on iterative contractions of identical
edges. In order to efficiently contract edges, GRAPHITOUR selects edges appearing
more frequently, and solves an instance of maximum cardinality matching problem, which
finds as many edges as possible such that no two edges share a common vertex.

Fig. 1 shows an example of contraction of identical edges. The graph of (A) contains 4
edges labeled with ’a’ and ’b’, 2 edges with ’a’ and ’a’, 1 edge with ’b’ and ’b’, and 1 edge
with ’a’ and ’c’. GRAPHITOUR selects edges with ’a’ and ’b’ because they appear most
frequently, and solves maximum cardinality matching problem for their edges. However,
optimal solutions are not necessarily uniquely determined. (B) shows a contracted graph
after the top-left edge with ’a’ and ’b’ is substituted with a new vertex labeled with ’ab’.
On the other hand, (C) shows a contracted graph after the top-right edge with ’a’ and ’b’ is
substituted. This example implies that GRAPHITOUR can generate different compressed
graphs.

In order to measure the similarity of networks, the same compressed graph should
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Figure 1: Example of contraction of identical edges. (A) Graph with 7 vertices and 8
edges. (B, C) graphs contracted from the graph (A) by GRAPHITOUR. (D) the graph
contracted from the graph (A) by our proposed method.

always be obtained. Therefore, we improve GRAPHITOUR for that purpose, and propose
the following algorithm to uniquely determine contracted edges in each iteration.

Procedure
Input: undirected graph G(V,E) with labeled vertices V and edges E

(a total order ≤ is defined for the set of labels L,
and each v ∈V is labeled with lv ∈ L);

Output: induced compression rules R and compressed graph;
Begin

R := /0;
s(l) := {l} for each label l ∈ L;
while ∣E∣> 0

E(l1, l2) := {(v1,v2)(∈ E)∣(lv1 , lv2) = (l1, l2) where lv1 ≥ lv2 , l1 ≥ l2};
E = {E(l1, l2) for all l1, l2 ∈ L∣ no two edges in E(l1, l2) share a common vertex};
if E = /0 then return (R,G);
E ′ := {E(l1, l2)(∈ E )∣ ∣E(l3, l4)∣ ≤ ∣E(l1, l2)∣ for all E(l3, l4) ∈ E };
select E(l1, l2)(∈ E ′) such that s(l1)∪ s(l2)< s(l3)∪ s(l4)

or (s(l1)∪ s(l2) = s(l3)∪ s(l4) and (l1, l2)< (l3, l4)) for all E(l3, l4) ∈ E ′,
where l1 ≥ l2, l3 ≥ l4;

add a new label ln in L such that ln > l for all l ∈ L;
s(ln) := s(l1)∪ s(l2);
R = R ∪{ln← (l1, l2)};
for each edge e ∈ E(l1, l2)

substitute e with a new vertex labeled with ln;
return (R,G);

End

The proposed algorithm avoids to contract edges which share a common vertex. In the
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example of Fig. 1, our algorithm does not choose edges whose endpoints are ’a’ and ’b’,
instead chooses the second candidate edges whose endpoints are ’a’ and ’a’, and obtains
the graph of (D) as the result. It should be noted that the proposed algorithm does not
solve maximum cardinality matching problem because it selects only edges such that all
edges with the same labels do not share a common vertex.

However, it is not sufficient to uniquely determine contracted edges because there can
be more than one set which has the same number of edges, that is, ∣E ′∣> 1. Therefore, we
introduce a total order to sets of labels to determine priority of edges. Each edge has a set
of labels (l1, l2) corresponding to two vertices of the edge. Let s1 and s2 be sets of labels.
We can define a total order for s1 and s2 as follows. First, we sort s1 and s2 by descending
order, respectively. We compare i-th elements s(i)1 ,s(i)2 of s1 and s2, and define s1 < s2 if
i exists such that s(i)1 < s(i)2 and s( j)

1 = s( j)
2 (for all j < i). The proposed algorithm selects

edges with smallest set of labels from E ′ according to the total order. For example, if we
compare s1 = {l1, l3} with s2 = {l3, l2} under l1 < l2 < l3, s1 and s2 are sorted as {l3, l1}
and {l3, l2}, respectively, and we have s1 < s2.

When edges with (l1, l2) are contracted, a new label ln is added to L, where ln > l
for all l(∕= ln) ∈ L. In computational experiments, Morgan index [11] based on graph
structures is assigned to each vertex. However, new added labels themselves do not reflect
the original graph structure. Therefore, in order to make effective use of the total order
of original labels, we introduce a set of labels for each label l, s(l), which consists of
only original labels. Then, s(ln) is defined to be s(l1)∪ s(l2) when (l1, l2) is substituted
with ln. The algorithm compares s(l1)∪ s(l2) with s(l3)∪ s(l4) before comparing edges
of (l1, l2) and (l3, l4). For example, for the graph of Fig. 1D, the algorithm selects edges
with (’aa’, ’b’) as contracted edges because it appears most frequently. However, if there
is another edge with (’b’, ’b’) than shown in Fig. 1D, edges of (’aa’, ’b’) and (’b’, ’b’)
are compared. We suppose that ’a’<’b’<’c’<’aa’ and ’aa’ was obtained by contracting
edges with (’a’, ’a’). Then, the corresponding sets to (’aa’, ’b’) and (’b’, ’b’), s1 =
s(’aa’)∪ s(’b’) = {’a’,’a’,’b’} and s2 = s(’b’)∪ s(’b’) = {’b’,’b’}, are compared, sorted
as {’b’,’a’,’a’} and {’b’,’b’}, respectively, and we have s1 < s2. Then, edges with (’aa’,
’b’) are selected, and contracted to vertices with a new label ’aab’, where ’aab’>’aa’ and
s(’aab’) = s(’aa’)∪ s(’b’) = {’a’,’a’,’b’}.

3 Similarity Measure
The universal similarity metric (USM) was proposed by Li et al. [8], and has been

applied to several biological data [3, 7]. USM between two objects o1 and o2 is defined
using Kolmogorov complexity K(o) as follows:

USM(o1,o2) =
max(K(o1∣o∗2),K(o2∣o∗1))

max(K(o1),K(o2))
. (1)

Kolmogorov complexity K(o) of an object o is defined to be the length of the shortest
program P for a universal Turing machine U which outputs o, and the conditional Kol-
mogorov complexity of o1 given o2 is defined to be the length of the shortest program P
which outputs o1 when o2 is given as follows:

{
K(o) = min{∣P∣ ∣P is a program such that U(P) = o},
K(o1∣o2) = min{∣P∣ ∣P is a program such that U(P,o2) = o1}. (2)
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Table 1: Statistics of metabolic pathways
for several organisms.

organism # of nodes # of edges
H. sapiens 1550 1673
M. musculus 1518 1640
A. thaliana 1389 1395
D. melanogaster 1238 1250
C. elegans 1049 1009
E. coli 1103 1256
S. cerevisiae 983 1028
B. subtilis 994 1065
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Figure 2: Example of calculation of Mor-
gan index. (A) 1 is assigned to each ver-
tex. (B) first iteration. (C) second itera-
tion.

It should be noted that K(o) is considered as a measure of the amount of information
which the object o contains.

Since it is not possible to obtain these Kolmogorov complexities for real data, we
approximate K(G) of a graph G by C(G) = ∣R∣+ ∣Ec∣, where ∣R∣ means the number of
rules extracted from G by our method, and ∣Ec∣means the number of remaining edges after
the compression of G. The conditional Kolmogorov complexity K(G1∣G2) of G1 given
G2 can be approximated to be C(G1 ∪G2)−C(G2) as in [3, 7], where G1 ∪G2 means
the concatenated graph G′(V ′,E ′) of G1(V1,E1) and G2(V2,E2) such that V ′ = V1 ∪V2,
E ′ = E1∪E2, ∣V ′∣= ∣V1∣+ ∣V2∣ and ∣E ′∣= ∣E1∣+ ∣E2∣. Even if there are identical vertices
(i.e. vertices with identical labels) between G1 and G2, they are added to V ′ as different
vertices.

Substituting K(o) of Eq.(1) with C(G), the approximated USM for graph compres-
sion, GUSM, between two graphs G1 and G2 is given as follows:

GUSM(G1,G2) =
C(G1∪G2)−min(C(G1),C(G2))

max(C(G1),C(G2))
. (3)

It should be noted that GUSM(G,G)= 0 if ∣Ec∣= 0. If G1 and G2 are similar, GUSM(G1,G2)
approaches 0.

4 Computational Experiments
To evaluate the proposed measure, we used metabolic pathways for several organisms,

H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae,
and B. subtilis, from KEGG database [4] (see Table 1).

In our first computational experiment, all nodes in the metabolic networks were la-
beled with chemical compounds, and there was only one edge having the same labels,
that is, ∣E(l1, l2)∣ = 1. Then, our compression algorithm for G(V,E) produced rules R
and the remaining graph Gc(Vc,Ec) as C(G) = ∣R∣+ ∣Ec∣= ∣E∣. This means that G is not
compressed.

Since we would like to compare network structures for the metabolic networks, we
replaced labels with Morgan index [11]. Fig. 2 shows an example of calculation of Mor-
gan index. First, 1 is assigned to each node. Next, the sum of values of adjacent nodes
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is assigned for each node. This iteration is repeated until the number of different values
of Morgan index does not increase. We call the index obtained in this way the original
Morgan index. Morgan index of one iteration is equivalent to the degree of each node,
and Morgan index depends on graph structures.

We fixed the number of iterations of the Morgan index procedure, applied our com-
pression algorithm to individual and concatenated metabolic networks, G1,G2,G1 ∪G2,
and calculated GUSM(G1,G2) from C(G1), C(G2) and C(G1∪G2). To confirm that our
compression algorithm works for measuring the similarity of metabolic networks, we ob-
tained hierarchical clustering results using the nearest neighbor (single linkage) method,
and compared them with actual phylogenetic trees. Moreover, we performed such exper-
iments with several numbers of iterations from 1 to 20 because the number of iterations
of the original Morgan index is at most 11 for the metabolic networks.

Fig. 3 shows the results of hierarchical clustering for metabolic networks of several
organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S.
cerevisiae, and B. subtilis with Morgan indices of 1, 2, 3, 6, 11, and 12 iterations. The
numbers of contracted edges for the metabolic network of H. sapiens with Morgan in-
dices of 1, 2, 3, 6, 11, and 12 iterations were 251, 1367, 1387, 1395, 1395, and 1395,
respectively. The results of more than 5 iterations were almost similar to those of 12 it-
erations. Fig. 4 shows the results on the number of different values of Morgan indices
for the metabolic networks for 1-20 iterations of the Morgan index procedure. We can
see from this figure that the number of different values of Morgan indices is almost con-
stant for more than 11 iterations. For a small number of iterations, it is considered that
metabolic networks were not compressed well because many edges have the same labels
and share common nodes. This means that the number of iterations is required to be large
for measuring the similarity more accurately. However, for that purpose, the maximum
number of iterations of the original Morgan index over all organisms is sufficient because
the number of different values of Morgan indices is almost constant in more than that.

According to the results of hierarchical clustering in Fig. 3, H. sapiens was always
nearest to M. musculus among the metabolic networks. Bacterial organisms of B. subtilis
and E. coli were furthest from H. sapiens in the result of 12 iterations. It is considered that
the result of 12 iterations is almost consistent to actual phylogenetic trees. This suggests
that the proposed method could measure the similarities between metabolic networks ad-
equately.

Furthermore, the proposed method is efficient. The computational time was at most 9
seconds even for the concatenated network of H. sapiens and M. musculus with Morgan
index of 12 iterations. These experiments were done in a single processor core on a
PC with Xeon X5460 3.16GHz CPUs and 8GB memory under the Linux (version 2.6)
operating system, where the g++ compiler was used with optimization option -O3.

5 Concluding Remarks
In this paper, we have proposed a novel method for compressing biological networks.

One of the important properties of the proposed method is that isomorphic networks are
compressed in the same way. We have applied the proposed compress method to compar-
ison of metabolic networks. The results suggest that the proposed compression method is
useful for comparison of biological networks although comparison with exiting methods
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Figure 3: Results of hierarchical clustering for metabolic networks of several organisms,
H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae,
and B. subtilis with Morgan indices of 1, 2, 3, 6, 11, and 12 iterations.
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is left as future work.
Though we have applied the method to comparison of networks, the application is not

limited to comparison. It might be applied to detection of network motifs with hierarchical
structures because our method iteratively compresses edges (edges can be replaced by
small subgraphs).

One drawback of our proposed compression method is that it is not a lossless compres-
sion method (i.e., the original network cannot be reconstructed from compressed data).
Therefore, improvement of the method towards lossless compression is also important
future work.
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