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Abstract Identification of the interactions among proteins is crucial to illustrate their functions,
and further, can help to understand the biological processes and provide insights into the mech-
anisms of diseases. It has became one of the most challenging and important task in the post-
proteomic researches. Comparing with costly and time-consuming biochemical experiments, the
computational methods have attracted much attention due to their low costing and competitive per-
formance. In this paper, we develop a new method based only on coding sequence to identify novel
protein-protein interactions (PPIs). To deal with the imbalance problem, we select suitable nega-
tive training set before implementing support vector machine. The proposed method is validated
on PPIs data of Plasmodium f alciparum and Escherichiacoli, and yields a predictive accuracy of
93.38% and 92.30% respectively. When performed on independent Plasmodium f alciparum and
Escherichiacoli datasets, our method displays promising generalization ability.

Keywords Protein-protein interactions; Codon usage; Support vector machine; Imbalance prob-
lem

1 Introduction
Identification of the interactions among proteins is crucial to illustrate their functions,

and further, can help to understand the biological processes and provide insights into the
mechanisms of diseases. It has became one of the most challenging and important tasks in
the post-proteomic researches. Various experimental techniques have been developed for
large-scale PPIs analysis, including yeast two-hybrid systems [5, 11], mass spectrometry
[6, 10], protein chip [23] and so on. Comparing with these costly and time-consuming
biochemical experiments, the computational methods have attracted much attention due
to their low costing and competitive performance.

Current computational methods for PPI prediction require a large amount of genomic
data sources, such as, Gene Ontology (GO) annotations, gene expressions, evolution in-
formation and son on. However, usually some of them is not available for some important
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genes. Sequence-based methods then become popular because they only demand the in-
formation of amino acid sequences, but the highest accuracy of these methods is only
∽ 80% [9], such as the methods by Martin et al. [16], Chou and Cai [3]. Shen et al.[19]
have developed a conjoint triad feature construction method, and with SVM as the classi-
fier, yields a high prediction accuracy of 83.9%, when applied to predict human PPIs.

The knowledge that codon usage is correlated with expression level has been widely
acceptable [12], and the hypothesis of some function-specific codon preferences has been
confirmed by experiments [4]. Naiafabadi and Salavati [17] then proposed an sequence-
based method by extract the sequence features in the genome instead of the proteome. By
using a naïve Bayesian network to combine the frequencies of all codons, the encouraging
predictive results were obtained. However, the best results in their work were obtained by
incorporating the other genomic data. So we want to develop a computational method for
predicting PPIs based only on coding sequence.

As an excellent machine learning method, support vector machines (SVMs), moti-
vated by statistical learning theory [21, 22], have been proven successful on many differ-
ent classification problems in bioinformatics [18]. Identification of PPIs can be addressed
as the two-classification problem: determining whether a given pair of proteins is inter-
acting or not. Inspired by that, in this paper, two-class SVM with codon usage is used to
predict PPIs. To deal with the imbalance problem, the suitable negative training set is se-
lected before implementing two-class SVM. The proposed method is validated on the PPIs
data of Plasmodium f alciparum and Escherichiacoli, and yields a predictive accuracy of
93.38% and 92.30% respectively. It is further evaluated on Plasmodium f alciparum and
Escherichiacoli independent PPIs datasets, and achieves the test sensitivity of 60.49%
and 84.4% respectively.

2 Materials and Methods
In this section, we describe the benchmark datasets and the predictive model in this

paper.

2.1 Materials
Here, PPIs on two different organisms: Plasmodium f alciparum(P. f alciparum) and

Escherichiacoli(E.coli) are used to validate the performance of the proposed predictive
models. P. f alciparum is a eukaryote, while E.coli is a prokaryote. The detailed informa-
tion of these benchmark datasets can be found in Table 1 in [17]. The genome sequences
for them can also be downloaded from [17]. Specially, for P. f alciparum, the benchmark
positive and negative sets are the same as the gold standard sets in [17], while for E.coil,
we exclude the interactions which contain missing proteins in the corresponding genome
sequence datasets. Thus the number of interactions is 7689 and 6954 for P. f alciparum
and E.coil respectively.

2.2 Methods
2.2.1 Construction of input feature vectors

We represent each open reading frame (ORF) by a binary space (V,D) ,where V =
(v1, ⋅ ⋅ ⋅ ,vm) represents the vector space of the sequence features, and each feature vi rep-
resents a kind of codon; D = (d1, ⋅ ⋅ ⋅ ,dm) is the frequency vector corresponding to V , and
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the value of the di is the frequency of type vi appearing in the corresponding ORF. Be-
cause there are 64 kinds of codon, the size of V should be 64; thus, m = 64. The detailed
definitions for (V,D) are illustrated in [17]. Overall, a 64-dimension vector corresponding
with each ORF has been constructed, which is called as codon modes.

Another method for encoding feature vector of ORF is incorporating 64 codons into
20 amino acids, that is, using a 20-dimensional vector to represent ORF, each element of
this vector is the frequency of a sort of amino acid appearing in the corresponding ORF,
and we call this kind of vector as codon merger modes.

There are two ways to construct the feature vectors which can be applied to represent
protein-protein pairs:

1. Concatenating the codon or codon merger modes:
A pair of protein A and protein B is represented by concatenating the codon or codon

merger modes DA and DB. That is the input feature vector FAB for a protein pair A-B is
calculated as follows:

FAB = DA ⊕DB, (1)

where ⊕ is the concatenation operator. As the authors do in [20], to make predictive
results for protein pair A-B identical to B-A, we train and test on both FAB and FBA, and
report the average predictive results in numerical experiments.

2. Distance of protein pairs:
A pair of protein A and protein B is represented by a distance vector. DAB

k = ∣dA
k −dB

k ∣
is used to measure the distance between protein A and B. So the input feature vector FAB
for a protein pair A-B is calculated as follows:

DAB = (dAB
1 , ⋅ ⋅ ⋅ ,dAB

m )T, dAB
k = ∣dA

k −dB
k ∣, (2)

where m = 64 for codon modes, m = 20 for codon merger modes.
For codon modes, we use the distance of protein pair to represent a pair of proteins,

which is the same as the authors did in [17]. For codon merger modes, the concatena-
tion operator is used. Because the dimension of distance with respect to codon merger
modes is 20, it may be not enough to generalize a good predictor with respect to SVM,
since SVM would like to deal with high dimensional dataset. We verify this in numerical
experiments. Thus SV Mcodon is used to denote the SVM with codon usage (using 64-
dimensional vector to represent protein-protein pairs), and SV Mcodon meger is used to de-
note the SVM with codon merger usage (using 40-dimensional vector to represent protein-
protein pairs).

2.2.2 Predictive model
The two class problem is constructed by using the feature constructing methods de-

scribed in previous section. The training set is:

T = {(xi,yi), i = 1 ⋅ ⋅ ⋅ , l}, xi ∈ Rq, yi = {−1,+1}, (3)

where yi equals to 1, if there is an interaction between the corresponding protein pair,
denoted by positive pair, and equals to -1, if not, denoted by negative pair.

To maintain a balance between positive and negative training data in SVM training
procedure, we select a suitable set of training negative data points from the whole negative
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set firstly, and then perform the two-class SVM. The suitable negative set should be a good
representation of the entire negative set, so we select the data points which can embody
the main distribution of the whole dataset. Specially, firstly, calculate the mean vector of
the whole negative data points; secondly, compute the distance between each data point
and the mean vector; finally, select the data points far from the mean vector and make the
chosen dataset with the nearly same size of the positive set. After selecting the suitable
negative set, we implement two-class SVM to predict PPIs. This method is denoted by
SV M−SN

We also randomly select the negative set from the whole training negative set, and then
use two-class SVM on training positive set and this random negative set to perform the
predictive task. It is denoted by SVM-random. We compare the performance of SVM-SN
with the average results of SVM-random in experimental section.

2.3 Cross-validation and parameter selection
To evaluate the performance of SVM-SN and SVM-random, we perform the 10 fold

cross-validation procedure as the authors did in [17]: the benchmark dataset is randomly
split into 10 subsets with roughly equal size, each subset are taken in turn as the test set,
the remaining 9 subsets are used for training.

In SVM-SN and SVM-random, the RBF kernel function is used. The penalty param-
eter C and the RBF kernel parameter σ are determined by 5-fold cross-validation before
implementing each method on PPIs datasets.

2.4 Evaluation criterions
The performance of proposed method is evaluated by using receiver operating curve

(ROC) [7]. Furthermore, the other criterions, such as AUC (area under the ROC curve),
sensitivity= T P/(T P+FN), speci f icity= T N/(T N+FP), precision= T P/(T P+FP),
accuracy = (T P+T N)/(T P+T N +FP+FN) are also used to display the performance
of the proposed predictive methods.

3 Results and discussions
3.1 The performance on P. f alciparum

We plot the ROC cure and the evaluation criterions for each method on P. f alciparum
in Figure 1. As shown in Figure 1, the performance of SV Mcodon − random is compara-
ble with that of PIC, while SV Mcodon − SN outperforms PIC, and SV Mcodon merger − SN
achieves the best predictive performance. SV Mcodon meger −SN outperforms SV Mcodon −
SN with not only high AUC, but also high other criterions except for sensitivity. We want
to test whether the performance can be improved by integrating other data sources, such as
gene expression data. The microarray data for P. f alciparum is downloaded 14 microar-
ray experiments (Affymetrix S98 chipset, GPL 90 GEO platform) from GEO. Missing
expression values are filled by the mean of the expression values in other experiments.
Genes without corresponding identifiers are discarded. Finally, the 14 experiments cov-
ered a total of 4797 unique proteins. We concatenate the gene microarrays and codon
merger modes to represent proteins. SV Mcodon merger+gene expression −SN is used to denote
the SV M − SN with codon merger modes and gene microarrays. From Figure 1, we can
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Figure 1: The performance of poposed methods for P. f alciparum.

imply that if some other genome data sources can be integrated into the predictive model,
the performance can be further improved.

We evaluate the performance of SV Mcodon − SN and SV Mcodon merger − SN on an in-
dependent dataset (Hughes et all, 2005) [13] which is generalized by yeast two-hybrid
experiments. This dataset includes 2,823 interactions which contains 1,267 proteins. By
training on the benchmark dataset, accuracy on the test dataset are 65.14% and 60.49%
by implementing SV Mcodon − SN and SV Mcodon meger − SN respectively. We generate
the negative set by using the positive dataset: for example, AB and IJ are interaction
pairs, thus AI, AJ, BI, or BJ could be the negative pairs [19], that is there are 11,288
(4× (2823− 1)) non-interactions which can be incorporated into the test dataset. Two
test datasets are used to test the performance of our methods: the first dataset con-
tains 2,823 interactions and randomly selected 2,823 non-interactions, while the sec-
ond one contains 2,823 interactions and the entire 11,288 non-interactions. We train
SV Mcodon merger − SN and SV Mcodon − SN on the benchmark dataset, and test on two
test datasets respectively. For SV Mcodon − SN, the AUCs are 0.515 and 0.514 for two
test datasets respectively, while for SV Mcodon merger −SN, the AUCs are 0.504 and 0.501.
That is, although two test datasets contain positive (Pos) and negative (Neg) data points
with different ratio (1:1 and 1:4), there have been a little difference on the test results
between them for both SV Mcodon merger −SN and SV Mcodon −SN. However, with respect
to the low FPR (false positive rate), the TPR (true positive rate) of SV Mcodon merger −SN
is higher than that of SV Mcodon − SN on both two test datasets. For example, for the
first test dataset (Pos : Neg = 1 : 1), when FPR reaches 0.02, the TPRs are 0.018 and
0.023 for SV Mcodon − SN and SV Mcodon merger − SN respectively. However, for both
SV Mcodon merger − SN and SV Mcodon − SN, the AUCs are just more than 0.5. It implies
that both codon and codon merger are not suitable for the physical interaction but prefer
to co-pathway interaction prediction.

3.2 Performance on E.coli
For E.coli, the ROC curves and evaluation criterions are drawn for proposed methods

in Figure 2. It shows that, the performance of SV Mcodon − random is nearly the same as
that of PIC, whereas SV Mcodon−SN performs better than PIC, while SV Mcodon merger−SN
outperforms all other methods. Furthermore, SVM with codon merger performs better
than that with codon modes not only on randomly selected negative set but also on the
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Figure 2: The performance of proposed methods for E.coli.

well-chosen negative set.
We test on the independent dataset which is collected by Andres Leon, E. e in [1].

This dataset contains 14,536 experimented physical interactions, by deleting the inter-
actions which is present in the training benchmark dataset, remains 10,529 interactions.
We generate the negative set in the same way as in P. f alciparum subsection, and 42,112
non-interactions are generated. We use two test datasets to test the performance of our
methods: the first test dataset contains 10,529 interactions and randomly selected 10,529
non-interactions, while the second one contains 10,529 interactions and 42,112 non-
interactions. We train SV Mcodon merger −SN and SV Mcodon −SN on the benchmark E.coli
dataset respectively, and test on these two test datasets. For SV Mcodon merger − SN, the
sensitivity is 84.4%, while is 74.6% for SV Mcodon − SN. These results imply that SVM
with codon merger modes has the good generalization ability in prediction of PPIs on
E.coli.

As mentioned above, SVM-SN with codon merger modes is the best predictor on
both two kinds of organisms. Although, in [17], the authors also combined codon merger
modes with their predictors (called as PI-A), and demonstrated that PI-A had a worse
performance than the predictor with codon usage, while SVM with codon merger outper-
forms with codon modes in our study. The reason behind these results may be that, they
applied distance of codon merger modes to represent a pair of proteins, while we use the
concatenation operator to formulate the feature vector for a pair of proteins, and SVM
is promising in the high-dimensional data. To verify that, we train on the benchmark
P. f alciparum and E.coli datasets with 5-fold cross-validation by SVM-SN. Under the
optimal parameters, for P. f alciparum, the cross accuracies are 91.02% and 94.72% for
distance and concatenation respectively, while for E.coli, the cross accuracies are 91.62%
and 94.33% for distance and concatenation respectively.

4 Conclusion
In this paper, the sequence-based methods are proposed to predict PPIs. We ex-

tract sequence features in the genome instead of the proteome. Specially, codon and
codon merger modes are used to represent proteins, and the distance and concatenation
operator are applied to formulate the feature vectors for a pair of proteins. By using
SV Mcodon merger − SN in imbalance problem, the significant improvement in prediction
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can be obtained on both two kinds of organisms. For testing the generalization ability
of SV Mcodon merger −SN, we train on the benchmark datasets and test on the independent
interactions of P. f alciparum and E.coli respectively. For P. f alciparum, the test accu-
racy on physical interaction generalized by yeast two-hybrid experiments is 60.49%. For
E.coli, the average test sensitivity is about 84% on the experimental physical interac-
tions. We also test whether the performance can be improved by integrating some other
data sources such as gene expression data. By incorporating 14 P. f alciparum microar-
ray experiments, the predictive results can be improved. Future work can introduced the
classical methods for integration of diverse data, including kernel-level integration [14],
ensemble learning [8] and naïve Bayesian network [17].

Efficient feature construction is important in determining the performance of a pre-
dictive method, thus future work can focus on how to improve feature extraction method,
including using the conjoint triad feature extracted from sequence in proteome like the
authors did in [19] to represent proteins. Future work can also be included to use more
efficient and simple SVM model on imbalance classification problem to implement pre-
diction task, such as SVM with an offset [15] an so on.
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signature products. Bioinformatics, 21, 218–226.

[17] Najafabadi, H. S. and Salavati, R. (2008) Sequence-based prediction of protein-protein inter-
actions by means of codon usage. Genome Biology, 9, R87–R95.

[18] Noble, W.S. (2004) Support vector machine applications in computational biology. In
Schoelkopf,B., Tsuda,K. and Vert,J.-P. (eds), Kernel Methods in Computational Biology. MIT
Press, Cambridge, MA, pp. 71–92.

[19] Shen, J. W., Zhang, J., Luo, X. M., Zhu, W. L., Yu, K. Q., Chen, K. X., Li, Y. X., and Jiang,
H. L. (2007) Predicting protein-protein interactions based only on sequences information.
Proceedings of the National Academy of Sciences, 104, 4337–4341.

[20] Soong, T., Wrzeszczynski, K.O., Rost, B. (2008) Physical protein-protein interactions pre-
dicted from microarrays. Bioinformatics, 24, 2608–2614.

[21] Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer, New York.
[22] Vapnik, V., 1998. Statistical Learning Theory. Wiley.
[23] Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, A., Bertone, P., Lan, N., Jansen, R.,

Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P., Dean, R. A., Gerstein, M. and Snyder, M.
(2001) Global analysis of protein activities using proteome chips. Science, 193, 2101–2105.

158 The 3rd International Symposium on Optimization and Systems Biology


