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Abstract Predicting drug-protein interactions from heterogeneous biological data sources is a
key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of
known drug-protein interaction while myriad unknown interactions to be predicted. To meet this
challenge, a manifold regularization semi-supervised learning method is presented to tackle this
issue by using labeled and unlabeled information which often gives better results than using the
labeled data alone. Further, our semi-supervised learning method integrates known drug-protein
interaction network information as well as chemical structure and genomic sequence data. We
report encouraging results of our method on drug-protein interaction network reconstruction which
may shed light on the molecular interaction inference and new uses of marketed drugs.

Keywords Drug-Protein Interaction Network; Semi-supervised Learning; Kernel Methods; Nor-
malized Laplacian.

1 Introduction
Producing a new drug is an expensive and time-consuming process that is subject to a

variety of regulations such as drug toxicity monitoring. Meanwhile, there have been many
drugs in market approved by U.S. Food and Drug Administration (FDA). Finding the po-
tential use in other therapeutic categories of those FDA approved drugs by predicting their
targets is an efficient and time-saving method in drug discovery [12]. Additionally, pre-
dicting interactions between drugs and target proteins can help decipher many biological
processes. Therefore, there is a strong incentive to develop statistical methods which is
capable of detecting these potential drug-protein interactions effectively.

A variety of methods have been proposed to address this in silico prediction problem.
One of the traditional methods is to predict the drugs interacting with a single given pro-
tein based on the chemical structure similarity in a traditional classification framework.
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This kind of approach does not take advantage of the information in the protein domain.
Another widely used method is molecular docking [9] which requires the 3D structure of
the target protein. Unfortunately the 3D structures of many proteins are not available [1].
For example, very few G protein-coupled receptors (GPCRs) have been crystallized.

Recently, some new approaches are proposed to perform drug-target prediction using
both the chemical (drug chemical structure) and genomic (protein structure) spaces infor-
mation [6, 11]. In [6] the two spaces are encoded together by defining a pairwise kernel
which is then fed to the support vector machine (SVM) for classification. The drawback
of this kernel framework is that there will be a huge number of samples to be classified
(number of drugs multiplies number of proteins) which poses much computational diffi-
culty. Another problem is that the negative drug-protein pairs are selected randomly with-
out experimental confirmation. Yamanishi et al.[11] developed a bipartite graph model
where the chemical and genomic spaces as well as drug-protein interaction network are
integrated into a pharmacological space. In the bipartite model, the known interactions
in the training data are labeled as +1 and all other unknown drug-protein pairs in the
training data are assumed as non-interactions with label 0. Then three different classifiers
are possible: new drug candidate versus known target protein, known drugs versus new
target protein and new drug candidate versus new target protein candidate. The first flaw
of the bipartite model, like the kernel SVM method [6], is that the unknown interactions
of the drugs and proteins in the training data are all assumed non-interaction and cannot
be inferred. And we prefer only one classifier to predict drug-protein interactions. Lastly,
both methods did not utilize a wealth of unlabeled information to assist prediction.

In this paper, a semi-supervised learning method – Laplacian regularized least square
(LapRLS) [2] is employed to utilize both the small amount of available labeled data and
the abundant unlabeled data together in order to give the maximum generalization ability
from the chemical and genomic spaces. Further, the standard LapRLS is improved by
incorporating a new kernel established from the known drug-protein interaction network
(NetLapRLS). In our framework, the known interactions are labeled as +1 and all other
unknown pairs are labeled as 0, indicating they are going to be predicted. Two classifiers
are trained on the drug and protein domains respectively and then are combined together to
give the final prediction. Compared with a naive weighted profiled method, the proposed
drug-protein interaction prediction methods based on LapRLS and NetLapRLS obtain
better results than using the labeled data alone. And NetLapRLS which incorporates
drug-protein network information provides superior performance than standard LapRLS.

2 Materials
The data used here is downloaded from <http://web.kuicr.kyoto-u.ac.

jp/supp/yoshi/drugtarget/>[11]. Here we give a brief description.

• Chemical data
The chemical structure similarity between compounds are calculated by SIMCOMP
[5] using chemical structures fetched from KEGG LIGAND database. SIMCOMP
provides a global similarity score by the ratio between the size of common sub-
structures and the size of the union structures of two compounds. Applying this
operation to all compounds pairs, we constructed a similarity matrix denoted Sd ∈
Rnd×nd which represents the chemical space information.
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• Genomic data
A normalized Smith-Waterman score is calculated to indicate the similarity be-
tween two amino acid sequences of target proteins which were obtained from the
KEGG GENES database. All protein pairs similarities are computed to construct a
similarity matrix denoted Sp ∈ Rnp×np which represents the genomic space.

• Drug-protein interaction data
At the time when the paper [11] was written, Yamanishi et al.[11] established four
data sets, in which 445,210,223 and 54 drugs target 664 enzymes, 204 iron chan-
nels, 95 GPCRs and 26 nuclear receptors, respectively, and the numbers of known
interactions of the four data sets are 2926,1476,635 and 90, respectively.

3 Methods
Semi-supervised learning (SSL) has been attracting much research attention in the

machine learning community [4]. SSL provides better prediction accuracy by using unla-
beled information. Here we employ a data-dependent manifold regularization framework
which uses the geometry of the probability distribution [2]. One of the implementations of
this framework is the Laplacian regularized least squares (LapRLS) which is very simple
and has comparable performance with Laplacian regularized support vector machine.

Consider the drug dataset 𝔻 = {d1, . . . ,dnd} and the target protein dataset ℙ = {p1,
. . . , pnp} where nd and np are the numbers of the drugs and proteins in study respectively.
An interaction pattern of drug di and target protein p j is represented by a binary label
matrix Y ∈ Bnd×np . If drug di is known to interact with target protein p j, Yi j = 1 oth-
erwise Yi j = 0. Given the ’gold standard’ drug-target interactions, the goal is to infer
their unknown interactions. Two classifiers will be trained using LapRLS on the chemi-
cal and genomic spaces separately, followed by a combination of the two classifiers. A
supervised learning method is suitable in this case. However the known interactions from
public databases are still extremely small compared with the whole drug-target interaction
space. Another problem is that we only have the information of the interaction. But we
do not know which drug target pair has no interaction. That means there are no negative
samples in the training process. Herein we first test a simple supervised weighted profile
method. And then the standard LapRLS and drug-protein interaction network incorpo-
rated NetLapRLS are extended to predict the drug-protein interaction.

3.1 Combining weighted profiles method
Combining weighted profiles method follows the idea that the label of the new sample

is determined by its similarity with the training samples. For a drug di, its interaction
f (di, p j) with a protein p j in ℙ is predicted with the following formulation:

f (di, p j) =
1

Ndi

nd

∑
k=1

Sd(di,dk)Yk j (1)

where Sd(di,dk) is a chemical structure similarity score from Sd and Ndi is a normalization
term defined as Ndi =∑nd

k=1 Sd(di,dk). Meanwhile, for a protein p j, its interaction f (p j,di)
with a drug di can also be calculated in the genomic space by:

f (p j,di) =
1

Np j

np

∑
k=1

Sp(p j, pk)Yik (2)
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where Sp(p j, pk) is a genomic sequence similarity score from Sp and Np j is a normaliza-
tion term defined by Np j =∑np

k=1 Sp(p j, pk). Note that Equations (1) and (2) are estimating
the interaction of the same drug-protein pair (di ∼ p j) from different data sources. The
two predictions should be combined to give the final prediction by

f̄ (di, p j) =
f (di, p j)+ f (p j,di)

2
.

The drug-protein pairs (di, p j) in f̄ (di, p j) with high scores are predicted to interact each
other. The original weighted profile method is used in [11]. However their predictions in
the two spaces are not fused. Fig.1 shows that the combining weighted profile method has
better performance than the predictions from the single space on the GPCRs data.
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Figure 1: ROC curves of combining weighted profile, weighted profile from chemical and
genomic spaces on GPCR data

3.2 LapRLS and NetLapRLS for drug-protein interaction prediction
In LapRLS and NetLapRLS, the data-dependent regularization terms are normalized

Laplacian operation on graphs. Herein two undirected graphs of drug domain and protein
domain including both labeled and unlabeled samples are represented by Gd = {Vd ,Ed}
and Gp = {Vp,Ep} ,where the set of nodes or vertices is Vd = {di}, Vp = {pi} and the
set of edges is Ed = {ed

mn}, Ep = {ep
mn} respectively. Each drug di or protein p j is treated

as the node on the graph, and the weight of edge ed
mn or ep

mn is Wd(m,n) or Wp(m,n)
respectively. Typically, the weight measures the similarity between two nodes. In our
case, the drug domain similarity Wd is obtained by combining the chemical similarity Sd
and drug-target interaction network. And the protein domain similarity Wp is derived by
combining the genomic similarity Sp and drug-protein interaction network spaces. The
chemical similarity Sd and genomic similarity Sp are already introduced in section 2.
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Next we need to extract the information from the drug-protein interaction network
space. The underlying assumption made here is that if two drugs share more target pro-
teins, they have larger similarity. For example, in Fig. 2, the solid line means the known
drug-protein interaction and the dotted line represents the interaction to be predicted. So
drug D2 shares 3 same proteins with drug D1 while drug D3 shares 1 protein with drug
D1. Drug D1 interacts with Protein P4. Based on the assumption here, we can infer that
it is more probable that drug D2 interacts with protein P4 than drug D3 does. So another
similarity matrix for drug domain from drug-protein interaction network Kd ∈ Rnd×nd

can be established whose each entry is the number of proteins shared by drug di and d j.
Similarly, we can also derive the network similarity matrix Kp ∈ Rnp×np whose each en-
try is the number of drugs shared by protein p j and pi. Though drug-protein interaction
network was also used in [11], our method employs a different way to extract information
from the network. The shortest path concept is used in [11] while we utilize the number of
common nodes shared by two proteins(drugs) to indicate a new similarity measurement.

Figure 2: The example of drug-protein interaction network.

Now the drug domain similarity Wd can be derived from the chemical similarity and
drug-protein network similarity by linear combination Wd = γd1Sd+γd2Kd

γd1+γd2
. Similarly, the

protein domain similarity Wp can be obtained by Wp =
γp1Sp+γp2Kp

γp1+γp2
. Compared with

the standard LapRLS , our NetLapRLS incorporates drug-protein network information
into the prediction model. In the following paragraph, we just describe the method Net-
LapRLS from which the standard LapRLS can be deduced by setting γd2 = γp2 = 0.

Given the similarity matrices of drug domain and protein domain, we first perform
Laplacian operation on the two graphs which is required by our semi-supervised learn-
ing method. The node degree matrixes Dd and Dp are two diagonal matrixes with their
(k,k)-element defined as Dd(k,k) = ∑nd

m=1 Wd(k,m) and Dp(k,k) = ∑np
m=1 Wp(k,m). The

Laplacian operation of the two graphs are defined as ∆d = Dd − Wd and ∆p = Dp −
Wp respectively. The normalized graph Laplacian are Ld = D−1/2

d ∆dD−1/2
d = Ind×nd −

D−1/2
d WdD−1/2

d and Lp = D−1/2
p ∆pD−1/2

p = Inp×np −D−1/2
p WpD−1/2

p respectively.
NetLapRLS defines a continuous classification function F that is estimated on the

graph to minimize a cost function. The cost function typically enforces a tradeoff between
the smoothness of the function on the graph of both labeled and unlabeled data and the
accuracy of the function at fitting the label information for the labeled nodes. Herein we
extend NetLapRLS to the matrix form. The two continuous classification functions are
defined by Fd ∈ Rnd×np and Fp ∈ Rnp×nd . Let’s first address the prediction Fd on the
drug domain. The cost function of NetLapRLS is defined as follows

F∗
d = min

Fd
J(Fd) = ∥Y−Fd∥2

F +βd∥FT
d LdFd∥2

F (3)
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where ∥ ⋅ ∥F is Frobenius norm. Representer theorem [8] shows that the solution is a
linear combination

F∗
d = Wdα∗

d

Substituting this form into equation (3), we arrive at a convex differentiable objective
function with respect to variable αd ∈ Rnd×np

α∗
d = arg min

αd∈Rnd×np
{∥Y−Wdαd∥2

F +βd∥αT
d WdLdWdαd∥2

F }

The derivative of the objective function vanishes at the minimizer:

−Wd(Y−Wdαd)+βdWdLdKdαd = 0

which leads to the following solution:

α∗
d = (Wd +βdLdWd)

−1Y

Then we get the prediction from the drug domain in the following form:

F∗
d = Wd(Wd +βdLdWd)

−1Y

Similarly, we can also derive the prediction in the protein domain by

F∗
p = Wp(Wp +βpLpWp)

−1YT

In the end, the predictions from drug and protein domains are combined into

F∗ =
F∗

d +(F∗
p)

T

2

4 Results
The weighted profile method, standard LapRLS and NetLapRLS were evaluated on

the four classes of target proteins including enzymes, ion channels, GPCRs and nuclear
receptors. We carry out a ten-fold cross-validation by splitting the gold standard inter-
action dataset into 10 subsets. Each fold was then taken in turn as a test set and the
remaining nine folds are used as training set. The performance is evaluated by using a re-
ceiver operating curve(ROC)[10]. For simplicity, we just set βd = βp = 0.3, γd1 = γp1 = 1
and γd2 = γp2 = 0.01 for NetLapRLS. These parameters can be better selected by a further
cross validation. If γd2 and γp2 are set as 0, the NetLapRLS becomes the standard LapRLS
method. Table 1 shows the AUC (area under the ROC curve), sensitivity and specificity.
The sensitivity and specificity are defined as TP/(TP+FN) and TN/(TN+FP), respectively.
The cutoff for calculation of sensitivity and specificity is set to select the top pairs with
the same number of the test set.

From table 1, we can see LapRLS and NetLapRLS methods which use unlabeled in-
formation provide better performance with respect to AUC score and sensitivity. And
the proposed NetLapRLS which incorporates the drug-protein interaction network in-
formation gets better result than the standard LapRLS, especially with respective to the
sensitivity which is dramatically improved.
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Table 1: Statistics of the prediction performance. The AUC is the area under the ROC
curve, normalized to 1. The cutoff for sensitivity and specificity is set to select the top τ
predictions, where τ is the number of the interactions in the testing data.

Data Methods AUC Sensitivity Specificity

Enzyme
Weighted profile 0.922 0.06 0.999

LapRLS 0.950 0.53 0.999
NetLapRLS 0.983 0.75 0.999

Ion channel
Weighted profile 0.907 0.17 0.997

LapRLS 0.961 0.36 0.998
NetLapRLS 0.986 0.72 0.999

GPCR
Weighted profile 0.869 0.13 0.997

LapRLS 0.934 0.24 0.998
NetLapRLS 0.971 0.50 0.998

Nuclear receptor
Weighted profile 0.810 0.11 0.994

LapRLS 0.850 0.16 0.994
NetLapRLS 0.888 0.21 0.995

Due to the limitation of space, we just focus on the result analysis on GPCRs using
our NetLapRLS. Figure 3 shows the predicted top 50 scoring predictions drug-protein in-
teraction network on the GPCRs data using the all known interactions as training data set.
Table 2 shows the list of the top 3 predicted drug-protein pairs, with annotation as given in
the KEGG database [7]. Searching the latest version of KEGG drug database, we found
all the three prediction are now annotated as interacting drug-target pairs. Additionally,
6 predicted new targets (adrenergic receptor class) of drug adrenaline (D00095) are also
confirmed in the latest KEGG drug database.

Table 2: Top 3 scoring predicted drug-protein interactions for the GPCRs data.
Rank Pair Annotation

1
D02358 Metoprolol
hsa154 adrenergic receptor, beta 2

2
D00095 Adrenaline
hsa155 beta3-adrenergic receptor agonist

3
D00371 Theophylline
hsa135 adenosine A2a receptor antagonist

5 Conclusion
In this work, we presented a semi-supervised learning method NetLapRLS for drug-

protein interaction prediction by integrating chemical space,genomic space and drug-
protein interaction network space. Our method did not need the negative samples and gave
a prediction for interaction of each drug-protein pair. The results we obtained when pre-
dicting human drug-target interaction networks involving enzymes, ion channels, GPCRs
and nuclear receptors demonstrated the superior performance of NetLapRLS. Further-
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Figure 3: Predicted GPCRs interaction network. Red diamonds and blue circles represent
drugs and target proteins, respectively. Gray and red edges indicate known interactions
and newly predicted interactions with 50 highest scores, respectively.

more, recently added drug-target interactions to the KEGG immediately allowed us to
confirm the 3 most strongly-predicted drug-target interactions and 6 targets of D00095 on
GPCRs dataset obtained using our method. This enhanced the strength of our proposed
method for real drug-target prediction problems.

The ideal way to use semi-supervised learning for predicting compound-protein in-
teractions is to incorporate different spaces by a multi-task kernel and is fed to typical
semi-supervised learning. However, implementation of such large scale semi-supervised
learning method will pose considerable computational problems. In the future, we want
to incorporate more sophisticated or biologically relevant information into the kernel sim-
ilarity such as side effect [3] to improve the prediction accuracy.
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