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Abstract Understanding transcriptional regulation (TR) principles and mechanisms is a hot topic
in the genomics and transcriptome research. Many experimental and computational methods have
been proposed to investigate this problem. However, perhaps partially because the high complexity
in the transcriptional regulation mechanism, or partially because the noise in the high-throughput
detection experiments, integrative approaches are demanded to discover underlying TRs which
could be missed when only single source of information is considered. In this paper, we explore the
biological ideas behind co-regulated protein complexes to study this problem. Co-regulated protein
complex has three remarkable characteristics: coding genes of member proteins share the same
transcription factor, coding genes usually express coordinately and member proteins intensively
interact and form a complex to implement a common biological function. It implies close relation-
ships among co-regulation, co-expression and intensive interaction at the levels of transcriptional
regulation, gene expression and protein-protein interaction. Based on these ideas, we integrate
protein-protein interaction (PPI), gene expression (GE) and transcriptional interaction (TI) data and
use them to form a framework to discover new TR relationships. Experiments on the yeast in three
conditions of cell cycle, diauxic shift and DNA damaging were conducted, and 20 novel TRs were
predicted and explained.

Keywords Transcription Regulation; Gene Expression; Protein-Protein Interaction

1 Introduction
Prediction of transcription regulations is one of the key tasks in the genomics and

transcriptome research. However, some problems still hamper current experimental and
computational methods to discover all important TRs for a species with high accuracy.
For example, experimental approaches are usually influenced by the noise inherent in
experimental and biological systems. Most computational approaches are based on only
DNA-binding motifs. They also often suffer from over-prediction problems owing to
short length of the motifs. Furthermore, presence of transcription factor (TF) at motifs
just only indicates the binding by the TF to the target genes. It does not necessarily mean
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a transcriptional function. To activate a TR process, additional environment stimuli and
co-regulators are usually required. Therefore, only considering single information such
as DNA-binding motifs to predict the TRs is not sufficient. In order to overcome these
weaknesses, system biology approaches have drawn increasingly more attention, as they
can provide a new way for TRs discovery by combining more comprehensive information
to make the inference more reliable.

A case in point is combining gene expression data [1] [2], as it is widely believed
that co-regulated genes would have similar expression profiles. Through extracting con-
served motifs from co-expressed gene cluster, new TRs may be found by seeking the
motifs in the promoter of candidate target genes. Moreover, some recent works have
studied the relationship between gene expression and protein-protein interaction. Jansen
[3] found that subunits of the same protein complex showed significant co-expression,
both in terms of similarities of absolute mRNA levels and expression profiles. Nitin [4]
studied the correlation between gene expression profiles and protein-protein interaction
on four evolutionarily diverse species: human, mouse, yeast and E Coli. They found that
the gene expression profiles of protein-protein interacting pairs were highly correlated in
E.Coli and the likelihood of predicting protein interactions from highly correlated expres-
sion data was increased by using additional protocol for other three species. Zhang [5]
observed an outstanding phenomenon that co-regulated coding genes with similar profiles
often lead to intensive interaction between their protein products and forming a protein
complex. Tan [6] proposed the innovative concept of co-regulated protein complex where
proteins were encoded by genes that are regulated by the same TFs. Coding genes of
proteins in the co-regulated complex usually exhibited coherent expression. These re-
sults imply that there is a tight linkage between transcription regulation, gene expression
and protein-protein interaction. Some newest works [7] [8] have tried to integrate these
multidata source for transcriptional network research.

In this paper we propose a framework to mine new TRs by integrating TI, GE and
PPI data. Our proposed framework first identifies active TFs at a given condition. Then
co-regulated protein groups are found to be used as seeds to do extensive search, during
which a scoring function is used to measure the coherent and significant degree of the
seed. Finally, we identify new TRs by comparing the seeds which have high score with
their extensive search candidates.

The remaining of paper is organized as following: part two is the description of the
method, which includes prediction model and working flow. Part three is the experiments
on the yeast in three conditions: cell cycle, diauxic shift and DNA damaging. Finally the
discussion and conclusion are made in the part four.

2 Method
Transcription factors do not all the time activate to participate a TR function. Only

when transcription factors are in the state of activeness, they are able to initiate the cor-
responding biological reaction. Identifying the active TFs under certain conditions is
challenging. Recent research work [9] adopted the assumption that the regulators are
themselves transcriptionally regulated. Therefore, their expression profiles can provide
informative clues to indicate their activity level. In this work, TFs are identified as being
’active’ at some certain condition if they reach sufficiently high expression levels. Our
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work is different from others, as we take into account the condition-oriented transcription
regulation.

2.1 Model and working flow
The left-hand panel of Figure 1 is an illustration of our model. Let TF represent the

active transcription factor in a condition. From the existing TI data, gene symbols a, b,
c, d are known to be target genes of TF, and A, B, C, D denote their proteins. From the
PPI network and gene expression profiles, if we observe the proteins A, B, C, D and an
additional protein E intensively interact one another and their coding genes a, b, c, d and
e express coordinately, we can predict the TF also regulate e in this condition. The reason
is because E is so similar with the co-regulated protein group of A, B, C, D at the levels
of gene expression and protein-protein interaction that it could infer that e also has the TI
association with TF like a, b, c and d, although the known TR dataset does not indicate it.

Figure 1: Model and working flow

The right-hand panel of Figure 1 demonstrates the working flow of our method. Given
a condition, we first identify the active TFs and find out all target genes for each active
TF. The proteins, whose target genes are regulated by the same TF, and their protein-
protein interaction form a sub-network in the global PPI network. Then this sub-network
is divided into several maximal connected sub-graphs (MCSG). Because MCSGs disjoint
each other, one TF may correspond to multiple MCSGs. Since not all MCSGs have to co-
express, we calculate significant and coherent score for each MCSG. The higher the score
is for a MCSG, the more likely the MCSG is to be a co-regulated complex. Finally, The
MCSGs with high significant and coherent scores and their nodes exceeding a threshold
are used as seeds to search additional TRs.

2.2 Coherence and significance measurement
We evaluate and compare the coherence and significance for all seeds. Let a seed

denoted by L = (V,E). For any vi, v j ∈ V , if e=(vi,v j) ∈ E, we calculate a score of the
coherence and significance between vi,v j by

Score(vi,v j) =Corr(vi,v j)std(vi)std(v j) (1)

where Corr(vi,v j) is the Pearson correlation coefficient between the coding genes of pro-
tein i and protein j to reflect their coherence, and std() is the standard deviation which
measures the coding gene’s activity.
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The coherence and significance score of L, denoted by T (L) is the sum over the scores
for all edges in L:

T (L) = ∑
e∈E

Score(e) (2)

We note that the coherence and significance score can be influenced by the number of
edges in L. In order to compare the coherence and significance between seeds with differ-
ent number of edges, for L with K edges, we randomly choose 10 000 graphs with K edges
from PPI network and compute their score with formula (2), then calculate the average
and standard deviation value of these 10 000 graphs and use formula (3) to standardize fi-
nal coherence and significance score for seed L with K edges.After standardization, seeds
with different number of edges can be compared with their coherence and significance.

Score(L) =
T (L)−avgk

stdk
(3)

2.3 Extensive search
As mentioned in Section 2.1, we discover TRs by seeking extra proteins which inten-

sively interact and co-express with the given seed with high coherence and significance
score. A protein which expresses differently with the seed will make the score decrease,
while a protein which expresses consistently with most parts of the seed will increase the
score. Therefore, the search process can be converted to optimize the score by adjusting
the structure of the graph starting from the seed.The pseudo codes are shown in Table 1.

Table 1: Pseudo codes of our search method
input: Linitial , Tstart , N
output: Lrs
step1: Lrs = Lintial , calculate Score(Lrs)
step2: for i = 1 to N

step 2.1 : calculate Ti = Tstart ×
(

Tend
Tstart

) i
N

step 2.2 : Ltry = Lrs
step 2.3 : randomly choose an edge e = (vi,v j) from PPI

and at least one of vi,v j should belong to V (Ltry)
step 2.4 : if(e ∈ E(Ltry) and e /∈ E(Linitial))

if( Ltry is still a connected graph after deleting e)
delete e from Ltry

else
add e into Ltry

step 2.5 : calculate Score(Ltry)
step 2.6 : δ = Score(Lrs)−Score(Ltry)
step 2.7 : if(∆≻ 0)

Lrs = Ltry
else

Lrs = Ltry with the probability p = e
∆
Ti

step3 :end
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Because the topological structures and sizes of different complexes may vary greatly,
extensive searching implements a simulated annealing procedure for every seed. Al-
though it is a kind of heuristic searching method, it could get global optimization solution.
By adding or deleting an edge operation from current solution, an opimal result with high
coherence and significance score can be found. After conducting extensive search for all
input seeds, we rank the seeds based on their scores. Top ones will be picked out to seek
potential new TRs by comparing final result and initial seed as described in Section 2.1.

3 Experiment
Our experiments were conducted on a yeast dataset which involves three biological

conditions: Cell Cycle [10], Diauxic Shift [11], DNA Damaging [12]. The Cell Cycle
wet-lab experiment included expression measurements of 6 178 genes measured at 77
time points. The DNA Damaging experiment had 6 129 genes’ expression values with 52
sampling points. The Diauxic Shift dataset consisted of 6 068 gene expression profiles
with 7 time points. All data are shown in the Table 2.

Table 2: Data source description
Type Source Description
PPI DIPs (2007.8) 4 928 proteins, 17 491 PPIs
GE Cell Cycle, Diauxic Shift, DNA Damaging 6 178, 6 129, 6 068 genes
TR Luscombe’s [13] 142 TFs , 7 074 TRs

We used the result in Luscombe’s work [13] to identify the conditional active TFs.
They determined 88, 76 and 75 active TFs in Cell Cycle, Diauxic Shift and DNA Damag-
ing conditions respectively. In the data pre-processing, we substituted zero to all missing
value in GE. Because there were three different molecular types of data in our work, we
unified data symbols by mapping all symbols into gene ID as standard reference. If the
corresponding coding genes of the proteins in the PPI cannot be found in the GE dataset,
we excluded those proteins from the PPI data. During the extensive search, the param-
eters were set as follows: Tstart = 1, Tend = 0, N = 300. For each experiment, we used
the MCSGs which had at least 3 nodes as the seeds. These seeds were ranked accord-
ing to their coherent and significant score. Because there’s no absolute threshold for the
coherent and significant score to judge which of seeds could be co-regulated complex to
infer new TRs, we only took the top ones in the ranking list into account to guarantee
the prediction accurate. In addition, we were limited to the predicted target genes whose
protein should interact with at least two members in the seed. Table 3 shows the results
of new TRs predicted in the three conditions.

The seed corresponding to the TF Hsf1 had the highest score (1.883782) in the cell
cycle condition. We use it as an example to illustrate how new TRs are discovered based
on Hsf1. The left-hand panel in Figure 2 is the topology of the seed and the final result of
the extensive search. ’Hexagon’ is an added node in final result and ’Circle’ is the node
in the seed. The right-hand panel in Figure 2 shows the coding genes’ expression profiles
of proteins in seed and added proteins in final result respectively. We can note that the
two sets of expression profiles exhibit a highly coherent and significant similarity, which
also validates the scoring function. In order to improve the prediction accuracy, we are
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Table 3: Predicted TRs in three conditions
Condition TF Predicted Target Genes
Cell Cycle Hsf1 YMR186W YKL117W YOR027W

Mbp1 YJL173C YOL090W
Diauxic Shift Baf1 YMR049C YHR052W YHR066W YPL043W

YNL110C YNL175C YER126C YJR063W
YPR190C YOR224C YNR003C YBR154C

Msn4 YMR261C YMR139W YDR247W YML100W
DNA Damaging Hap4 YDL004W YPL078C

Figure 2: The topology of seed and final search result of Hsf1. Gene expression profiles
of coding genes in the seed and in the result after extensive search

limited to the newly predicted target genes whose proteins should interact with at least
two proteins in the seed. Then, we can infer that Hsf1 also transcriptionally regulate the
target genes YMR186W, YKL117W, and YOR027W but not YOR220W.

We validated our prediction results from three aspects: (1) we retrieved and compared
with literature works which predicted the same TRs as well; (2) we detected the con-
served binding motifs from the target genes in the seed and examined whether there were
matches in the promoter of the predicted target; (3) we examined whether the function of
predicted target genes was consistent with those of target genes in the seed. Of course,
the final validation for the prediction result should depend on the biology experiment in
the cell cycle condition. We found that the results by [15] [16] and [17] [18] supported
our newly discovered TRs: Hsf1 regulated YMR186W and Hsf1 regulated YOR027W.
However, we have not found direct evidence to support that Hsf1 regulates YKL117W.
Maybe, we could find evidence from binding motif to support this. There’re two signifi-
cant binding motifs induced by the tool MEME from the upstream 600bp of coding genes
in the seed, which are shown in Figure 3. The first motif is consistent with a known Con-
sensus Motif (GAAXXTTCXXGAA) for Hsf1. We found that there’s a match to the first
motif in the 600bp upstream of YKL117W, YOR027W, and there’s a match to the second
motif in the upstream of YMR186W. Finally, we compared the function of Hsf1, coding
genes in the seed and the predicted target genes. SGD has an annotation for Hsf1 as fol-
lows: ’Hsf1 regulates the transcription of hundreds of targets, including genes involved
in protein folding, detoxification, energy generation, carbohydrate metabolism, and cell
wall organization. Deletion of Hsf1 is lethal and mutants are defective in several pro-
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Figure 3: Two motifs predicted by MEME [14] from the upstream 600p of five cod-
ing genes in the seed. The first motif is consistent with a known Consensus Motif
(GAAXXTTCXXGAA) for Hsf1 in TRANSFAC

cesses including maintenance of cell wall integrity, spindle pole body duplication, protein
transport, and cell cycle progression’. Meanwhile, we conducted a function enrichment
analysis for the eight genes YLR216C, YLL026W, YPL240C, YAL005C, YNL064C,
YMR186W, YKL117W, YOR027W. Our findings is that these genes have a common
function of ’protein folding’, which accords with that of Hsf1.

4 Conclusion
In this paper, we proposed a framework to discover new TRs by integrating TR, GE

and PPI data. Although it cannot detect all TRs for a species one time, it provided an
approach to exploit TRs from the complex mechanism. To make this method widely
applicable, two real-life difficulties should be taken with caution. These include: (1)
Time-course GE datasets with time points exceeding 10 for species except for yeast are
not too many. In fact, most of them are knock-out experiments, which usually re-sample
no more than 3 times. It’s hard to measure the genes’ correlation with such few time
points. (2) Difference in the topology of PPI networks for different species produces
different probabilities to predict the same TRs from the co-regulated complexes. For
example, E. Coli PPI network trends to be a tree structure, where the phenomenon that
one protein as a central node interact many other proteins ( one-to-many) is more notable
than that proteins in a small group interact mutually (many-to-many). When the data
become abundant and available, we believe our proposed method would discover more
TRs for more species.
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