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Abstract
The main purpose of this paper is to further investigate the stability problem of impulsive neural

networks with time-varying delays in the case that the underlying continuous delayed neural net-
works are unstable. By establishing an impulsive delayed differential inequality, some novel and
less conservative criteria for global exponential stability of the equilibrium point of such model are
derived analytically. It is shown that under certain conditions, impulses can make the underlying
continuous unstable delayed neural networks globally exponentially stable. Our results have im-
proved and generalized some published results and are help to design stability of neural networks
when both delay effect and impulsive effect are taken into consideration. An example is also given
to show the effectiveness of our results.
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1 Introduction
In recent years, a lot of attention has been devoted to the research on Hopfield neu-

ral networks (HNNs) due to the fact that HNNs can be applied in a broad range of ar-
eas such as associative memory, repetitive learning, classification of patterns, and opti-
mization problems. Meanwhile, it has been shown that these successful applications are
greatly dependent on the dynamic behaviors of the neural networks, such as the unique-
ness and asymptotic stability of equilibrium point of a designed neural networks. There-
fore, the problem of stability analysis of HNNs has become a rather significant topic in
both theoretical research and practical applications. On the other hand, due to the fi-
nite switching speed of the amplifiers and communication time, time delays is inevitably
encountered in many neural networks, which may be a source of oscillation and insta-
bility both in biological and artificial neural networks. Thus, a great deal of research
interests have been attracted to the stability analysis problem of HNNs with time delays.
Based on different assumptions and by using different approaches, a great deal of suffi-
cient conditions have been proposed to guarantee the asymptotic or exponential stability
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of HNNs with various types of time delays, such as constant, time-varying, or distributed
(see[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the references therein).

However, besides delay effect, impulsive phenomena can also be found in a wide vari-
ety of evolutionary process, particularly some biological systems such as biological neu-
ral networks and bursting rhythm models in pathology, in which many sudden and sharp
changes occur instantaneously, in the form of impulse [11]. Therefore, neural network
model with delay and impulsive effects should be more accurate to describe the evolution-
ary process of the systems. Consequently, in recent years there has been a growing interest
in the stability analysis of impulsive neural networks with time delays since impulses can
also affect the dynamical behaviors of the systems just as time delays. Some results re-
lated to this issues have been reported (see [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and
the reference therein). However, most of the aforementioned results have only focused
on the case that the underlying continuous system without impulsive effects are stable.
To the best of our knowledge, when the underlying continuous system are unstable, few
results have been developed to utilize impulsive effects to make the underlying unstable
system stable. In [20], by using the Lyapunov functions method and analysis technique,
the authors obtained a result for the uniform stability of the equilibrium point of impulsive
Hopfield-type neural networks systems with time delays. However, the result in [20] only
refer to uniform stability, and the delays considered are constants. In [21], Liu and Wang
established several exponential stability criteria for impulsive systems with time delay by
employing the method of Lyapunov functionals, and it was shown that an unstable system
can be made exponentially stable by an appropriate sequence of impulses. However, the
results in [21] require that the length of the impulsive interval must be greater than the size
of time-delay, which is too restrictive and conservative and there still exists open room
for further improvement.

Motivated by the above discussions, the main purpose of this paper is to further in-
vestigate the stability problem of impulsive neural networks with time-varying delays in
the case that the underlying continuous delayed neural networks are unstable. By es-
tablishing an impulsive delayed differential inequality, some novel and less conservative
criteria for global exponential stability of the equilibrium point of such model are derived
analytically. It is shown that under certain conditions, impulses can make the underlying
continuous unstable delayed neural network globally exponentially stable. Our results
have improved and generalized some published results and are help to design stability of
neural networks when both delay effect and impulsive effect are taken into consideration.
The effectiveness of our results are further illustrated by numerical example.

This paper is organized as follows. In Section 2, we introduce some basic definitions,
notations and lemma. In Section 3, we obtain some criteria for the global exponential sta-
bility of the equilibrium point of the impulsive neural networks with time-varying delays.
An example is given to illustrate the effectiveness of our theoretical results in section 4.
Finally, concluding remarks are given in Section 5.

2 Preliminaries
Let R denote the set of real numbers, R+ denote the set of nonnegative real numbers,

Z+ denote the set of positive integers and Rn denote the n-dimensional real space equipped
with the Euclidean norm ∥ ⋅ ∥.
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Consider the following impulsive Hopfield-type neural networks systems with time-
varying delays:
⎧
⎨
⎩

ẋi(t) =−cixi(t)+
n

∑
j=1

ai j f j(x j(t))+
n

∑
j=1

bi jg j(x j(t − τ(t)))+ui, t ∕= tk, t ≥ t0,

∆xi(t)∣t=tk = xi(t+k )− xi(t−k ), t = tk, k ∈ Z+, i = 1, ⋅ ⋅ ⋅ ,n,
(1)

where n denotes the number of neurons in the neural networks, C = diag(c1, . . . ,cn) is a
diagonal matrix with ci > 0, i = 1,2, . . . ,n, xi corresponds to the membrane potential of
the unit i at time t, τ(t) is transmission delay, and satisfies 0 ≤ τ(t)≤ γ (γ is a constant);
f j(x j(t)) and g j(x(t − τ(t))) denote, respectively, the measures of response or activation
to its incoming potentials of the unit j at time t and t − τ(t); ui is the constant input
from the outside of the network; A = (ai j)n×n indicates the strength of the neuron in-
terconnections within the network at time t; B = (bi j)n×n indicates the strength of the
neuron interconnections within the network at time t − τ(t); the fixed moments tk satisfy
0 ≤ t0 < t1 < t2 < ⋅ ⋅ ⋅ < tk < ⋅ ⋅ ⋅ , and limk→∞ tk = +∞, ∆xi(t)∣t=tk = xi(t+k )− xi(t−k ) de-
notes the jumps in the state variable at the time instants tk, where xi(t+) = lims→t+ xi(s),
xi(t−) = lims→t− xi(s). Without loss of generality, we assume that limt→t+k

xi(t) = xi(tk),
which means xi(t) is continuous from the right. The initial conditions of Eq. (1) are given
by xi(t) = ϕi(t) ∈ PC([t0 −γ, t0],Rn), where PC([t0 −γ , t0],Rn) denotes the set of all func-
tions of bounded variation and right-continuous on any compact subinterval of [t0 − γ, t0].
For ϕ ∈ PC([t0 − γ, t0],Rn), the norm of ϕ is defined by ∥ϕ∥γ = supt0−γ≤s≤t0 ∥ϕ(s)∥.

In this paper, we assume that some conditions are satisfied so that the equilibrium
point of system (1) does exist. Let x∗(t) = (x∗1,x

∗
2, ⋅ ⋅ ⋅ ,x∗n)⊤ be an equilibrium point of

the system (1). Impulsive operator is viewed as perturbation of the equilibrium point
x∗ of such system without impulsive effects. Moreover, we assume that ∆xi(t)∣t=tk =
xi(t+k )− xi(t−k ) = dik(xi(t−k )− x∗i ),dik ∈ R, i = 1, . . . ,n, and k ∈ Z+. In order to simplify
the equation, we make the following transformation: yi = xi − x∗i , i = 1,2, . . . ,n, then we
obtain the following system:

⎧
⎨
⎩

ẏi(t) =−ciyi(t)+
n

∑
j=1

ai j f̃ j(y j(t))+
n

∑
j=1

bi jg̃ j(y j(t − τ(t))), t ∕= tk, t ≥ t0,

yi(tk) = xi(tk)− x∗i (tk) = (1+dik)yi(t−k ), t = tk, k ∈ Z+, i = 1, ⋅ ⋅ ⋅ ,n,
(2)

where f̃ j(y j(t)) = f j(x∗j + y j(t))− f j(x∗j), and g̃ j(y j(t − τ(t))) = g j(x∗j + y j(t − τ(t)))−
g j(x∗j). Clearly, in order to prove the global exponential stability of the equilibrium point
of system (1), we just need to prove the global exponential stability of the trivial solution
of the system (2).

Let y(t) = (y1(t),y2(t), . . . ,yn(t))⊤, Dk = diag(1+d1k,1+d2k, . . . ,1+dnk), F̃(y(t)) =
( f̃1(y1(t)), f̃2(y2(t)), . . . , f̃n(yn(t)))⊤, G̃(yτ(t)) = (g̃1(y1(t − τ(t))), g̃2(y2(t − τ(t))), . . . ,
g̃n(yn(t − τ(t))))⊤, then the system (2) can be rewritten as

{
ẏ(t) =−Cy(t)+AF̃(y(t))+BG̃(yτ(t)), t ∕= tk, t ≥ t0,
y(tk) = Dky(t−k ), t = tk, k ∈ Z+,

(3)

Throughout this paper, we assume that the activation function fr, and gr are continu-
ous, and satisfy assumption (A1) or (Ã1) [22, 23]:
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(A1) There exist the constants kr, lr > 0, r = 1,2, . . . ,n, such that

0 ≤ fr(x1)− fr(x2)

x1 − x2
≤ kr,

∣gr(x1)−gr(x2)∣ ≤ lr∣x1 − x2∣, r = 1,2, . . . ,n,

for any two different x1,x2 ∈ R.
(Ã1) There exist the constants kr, lr > 0, r = 1,2, . . . ,n, such that

∣ fr(x1)− fr(x2)∣ ≤ kr∣x1 − x2∣,
∣gr(x1)−gr(x2)∣ ≤ lr∣x1 − x2∣, r = 1,2, . . . ,n,

for any two different x1,x2 ∈ R.
Obviously, Condition (Ã1) is less conservative than (A1), and some general activa-

tion functions in conventional neural networks, such as the standard sigmoidal functions,
satisfy Condition (A1) or (Ã1). It should be noted that the activation function satisfies
Condition (A1) or (Ã1) may be non-differentiable and/or unbounded. Moreover, Condi-
tion (Ã1) implies that the activation function may be non-monotonic [22, 23].
Definition 1 [11]. The trivial solution of system (3) is said to be globally exponentially
stable if, for any solution y(t, t0,ϕ) with the initial condition ϕ ∈ PC, there exist constants
λ > 0, M ≥ 1 such that

∥y(t, t0,ϕ)∥ ≤ M∥ϕ∥r exp−λ (t−t0), t ≥ t0. (4)

3 Main results
In this section, we derive the main results which ensure the stability of the equilibrium

point of the impulsive Hopfield-type neural networks with time-varying delays (1), i.e.,
the stability of the trivial solution of system (2). We have the following results:
Theorem 1. Assume that (A1) holds, and there exist n positive numbers p1, . . . , pn, such
that the following conditions are satisfied for all i = 1,2, ⋅ ⋅ ⋅ ,n, and k ∈ Z+,

(A2) −2 < dik < 0,
(A3) There exist two numbers ε1, ε2 ∈ [0,1] such that

ln max
{1≤i≤n, k∈Z+}

(1+dik)
2

sup
k∈Z+

{tk − tk−1}
+ α +

β
max

{1≤i≤n, k∈Z+}
(1+dik)

2 < 0

where α = max
1≤i≤n

(
− 2ci + 2a+ii ki +

n

∑
j=1, j ∕=i

{
∣ai jk j∣2ε1 +

p j

pi
∣a jiki∣2−2ε1

}
+

N

∑
j=1

∣bi jl j∣2ε2
)
,

with a+ii = max{aii,0} and β = max
1≤i≤n

N

∑
j=1

p j

pi
∣b jili∣2−2ε2 , then the trivial solution of (2) is

globally exponentially stable, which implies that the equilibrium point of system (1) is
globally exponentially stable.

The detail proof of this result is given in [24]. It is worth mentioning that the result
does not require the boundedness and the differentiability of the activation functions, and
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the differentiability of the time-varying delays. Therefore, Our results have improved
and generalized some published results. Moreover, it is shown that an unstable delayed
neural networks can be made globally exponentially stable by an appropriate sequence of
impulses. This point may be highly important significance in the stability design of neural
networks when both delay effect and impulsive effect are taken into consideration. More
concretely, for a given delayed neural networks, i.e., the system (1) without impulsive
effects, α and β can be derived by simple calculation if pk(k = 1, . . . ,n) are given, then the
stability design of the delayed neural networks can be achieved by appropriately choosing
the magnitude of impulses dik and impulsive interval tk − tk−1 such that all the conditions
of Theorem 1 are satisfied. In addition, , we can see from (A3) that the more frequent the
impulses are, the more benefit it is to stabilize the underlying delayed neural networks.
This is consistent with the intuition cognition.

When the activation function fr, and gr satisfy Condition (Ã1), we obtain the follow-
ing theorem.
Theorem 2. Assume that (Ã1) holds, and there exist n positive numbers p1, . . . , pn, such
that the following conditions are satisfied for all i = 1,2, ⋅ ⋅ ⋅ ,n, and k ∈ Z+,

(Ã2) −2 < dik < 0,
(Ã3) There exist two numbers ε1, ε2 ∈ [0,1] such that

ln max
{1≤i≤n, k∈Z+}

(1+dik)
2

sup
k∈Z+

{tk − tk−1}
+ α̃ +

β
max

{1≤i≤n, k∈Z+}
(1+dik)

2 < 0,

where α̃ = max
1≤i≤n

(
− 2ci + 2aiiki +

n

∑
j=1, j ∕=i

{
∣ai jk j∣2ε1 +

p j

pi
∣a jiki∣2−2ε1

}
+

N

∑
j=1

∣bi jl j∣2ε2
)
,

then the trivial solution of (2) is globally exponentially stable, which implies that the
equilibrium point of system (1) is globally exponentially stable.

4 Example
In this section, we present a numerical example and its simulation to illustrate that our

results can be applied to stabilize the unstable continuous system by using impulses.
Consider the following two-dimensional impulsive neural network with time-varying

delays:
⎧
⎨
⎩

ẋi(t) =−cixi(t)+
2

∑
j=1

ai j f j(x j(t))+
2

∑
j=1

bi jg j(x j(t − τ(t))), t ∕= tk, t ≥ t0,

∆xi(t)∣t=tk = dik(xi(t−k )− x∗i ), k ∈ Z+, i = 1,2.

(5)

where

C =

(
1 0
0 1

)
, A =

(
1 −4
−3 1

)
, B =

(
−2 −4
−2 −5

)
, (6)

and f j(s) = g j(s) = tanh(s)( j = 1,2), 0 ≤ τ(t) ≤ 1.50. It is easy to know that the point
x∗ = (x∗1,x

∗
2)

⊤ = (6.1363,−1.4318)⊤ is a equilibrium point of the system (5).
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Figure 1: The time response of the state variables for system (5)without impulsive effects.
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Figure 2: The time response of the state variables for system (5)with d =−1.60 .

Let k1 = k2 = 1, l1 = l2 = 1, p1 = p2 = 1, and ε1 = ε2 = 1/2, by simple calculation,
we can easily get that α = 14 and β = 9. Denote d̃ = max

{1≤i≤N, k∈Z+}
(1+ dik)

2, then it is

easy to verify that if the following condition hold,

sup
k∈Z+

{tk − tk−1}<
−d̃ ln d̃
14d̃ +9

, 0 < d̃ < 1, (7)

then all the conditions of Theorem 1 are satisfied, which means the the equilibrium point
x∗ of system (5) is globally exponentially stable..

In order to illustrate the effectiveness of the above result, for simplicity, we consider
the equidistant impulsive interval tk − tk−1 ≡ ∆ and dik ≡ d for i = 1,2 and k ∈ Z+. Let
∆ = 0.02, Fig.1-Fig.2 are the simulations results corresponding to change process of the
state variables of the system (5) with d = 0 and d =−1.60, respectively. It can be seen that
the unstable system (5) without impulsive effects (see Fig.1) can be globally exponentially
stabilized by an appropriate sequence of impulses (see Fig.2).
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5 Conclusion
In this paper, we have further investigated the stability problem of impulsive neu-

ral networks with time-varying delays in the case that the underlying continuous delayed
neural networks are unstable. By establishing an impulsive delayed differential inequality,
some novel and less conservative criteria for global exponential stability of the equilib-
rium point of such model have been derived analytically. It is shown that an unstable
delayed neural networks can be made globally exponentially stable by an appropriate
sequence of impulses. The obtained results do not require the differentiability and/or
monotonicity of the activation functions, and the differentiability of the time-varying de-
lays. Our results have improved and generalized some published results and are help to
design stability of neural networks when both delay effect and impulsive effect are taken
into consideration. An example is also given to show the effectiveness of the new results.
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