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Abstract Identifying community structure is an important issue in network science and has at-
tracted attention of researchers in many fields. It is relevant for social tasks, biological inquires, and
technological problems. In this paper, we proposed a new approach based on self-organizing map to
community detection. By using a proper weight-updating scheme, a network can be organized into
dense subgraphs according to the topological connection of each node. Besides unweighted undi-
rected networks, our method can also be used to detect communities in both weighted and bipartite
networks.
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1 Introduction
It has been shown in the past that many real systems can be represented as networks,

in which nodes denote the objects of interest and edges that connect nodes describe the
relationships between them. Such systems include social systems, ecological systems,
and cellular systems [1]. The networks in these systems have been revealed to have many
interesting topological properties, such as the small-world property and power-law de-
gree distribution [2]. One topic of current interests in network science is the detection
of community structure in complex networks. A community in a network can be qual-
itatively described as a collection of vertices within a graph that are densely connected
among themselves while being loosely connected to the rest of the network. Many social
and biological networks exhibit such a community or modular structure [3]. Uncovering
such community structure not only helps us understanding the topological structure of
large-scale networks, but also revealing the functionality of each component.

A number of methods have been proposed to detect community structure underlying
a network, which can be roughly divided into two classes. One class is based on the clus-
tering or aggregation principles, such as betweenness-based methods [3], random walk
methods [5], machine learning methods [6, 7]. The second class is to build an optimiza-
tion model to maximize certain modularity measures or criteria, such as modularity func-
tion Q [8, 9, 12, 11, 10], modularity density D [13, 14], information-theoretical method
[4].
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Figure 1: A two-layer self-organizing map for community detection.

The underlying difficulty in community detection is that there is no unique defini-
tion for ‘community’ and thus evaluation of network partitions is not straightforward.
On the other hand, optimization of modularity measures has been proved to be NP-hard,
which means that there is no polynomial-time exact algorithm for the community detec-
tion problem unless NP=P. In this paper, we design a self-organizing map approach [15]
for community detection in complex networks. According to the topological connection
of each node, our approach automatically organizes a network into dense subgraphs with-
out any heuristic manipulation. Besides unweighted undirected networks, our method can
also be used to detect communities in both weighted and bipartite networks.

2 Methods
Consider a network G with n nodes and m putative communities (here m can be an

upper bound of the number of communities). Let A = [ai j]n×n be the adjacency matrix of
the network G, and B = A+ I (I is a unit matrix). The scheme of the self-organizing map
for detecting community structure, shown in Figure 1, has n input neurons corresponding
to the nodes v1,v2, ⋅ ⋅ ⋅ ,vn in G, and m output neurons representing putative communities
C1,C2, ⋅ ⋅ ⋅ ,Cm. For each node i, the learning input Bi ∈ Rn is a vector such that bi,i = 1 and
b j,i = 1 if and only if v j is adjacent to vi in G, b j,i = 0, otherwise. The connection weight
matrix between input neurons and output neurons is W = [wi j]n×m, where the weight wi j
expresses the possibility or membership degree that node vi belongs to community C j. If
the input neuron vi is mapped into the output neuron C j, then the connection between vi
and C j should be reinforced. Moreover, all other weights of the winner output neuron
C j are also modified according to the adjacency relationship between the corresponding
nodes and the input node vi, since two adjacent nodes are more likely to be in a same
community.

The input vectors used in the learning phase are columns of the matrix B. For the node
vi, the corresponding input vector is x = Bi, where Bi is the i-th column of the matrix B,
i.e. xi = 1, and x j = 1 if and only if vi is adjacent to v j. The discriminant function is the
normalized correlation

η(W j,x) = (W j ⋅ x)T B(W j ⋅ x) (1)
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where W j is the jth column of the weighted matrix W , and ‘⋅’ denotes the inner product
between two vectors. The winner neuron C̄ j with respect to the input vector x is selected
by the following rule:

j̄ = argmax
j

η(W j,x). (2)

The weights associated with the winner neuron are updated as follows

W j̄(k+1) =
W j̄(k)+αBi

∥W j̄(k)+αBi∥∞
, (3)

and the weights associated with the non-winner neuron are updated as follows

W j(k+1) =
W j(k)+α(1−Bi)

∥W j(k)+α(1−Bi)∥∞
, (4)

where α is the learning rate, and j ∕= j̄.
After the training phase, the nodes are mapped into no more than m communities. The

communities are constructed according to the final connection weight matrix W . For the
i-th node, we define that it belongs to the j̄-th community if

j̄ = argmax
j

wi j.

The details of our implementation of the SOM algorithm are described as follows:

• Step 1. Initialization
Set the initial learning rate α0 and the maximum number of iterations MaxIter.
Randomly initiate W (0)n×m and let k = 0. Compute the input matrix Bn×n = A+ I.

• Step 2. Learning
Substep 2.1. Among all nodes in the network, randomly select a node vi with

the input vector x = Bi.
Substep 2.2. For j = 1 to m, calculate W j(k), the connection between node

vi to the output neuron C j. Calculate the discriminant function η(W j(k),x) by
equation (1). Then determine a winner neuron j̄ according to (2).

Substep 2.3. Update the connection weight matrix W (k+1) by the formulae
(3) and (4).

Substep 2.4. Repeat Substep 2.1 to Substep 2.2 until all nodes are learned.
Substep 2.5. Update the learning rate parameter α if adaptive learning rates

are used. If ∥W (k+ 1)−W (k)∥ < ε or k > MaxIter, go to Step 3; otherwise, let
k = k+1 and go to Substep 2.1.

• Step 3. Output
Classify all nodes into no more than m groups according to their final winner neu-
rons. Return the corresponding communities of the network.

For those real world networks with known community structure, we introduce a nor-
malized mutual information index as a measure of similarity between the real partition P
and the identified partition P′ [16]:

INMI(P′,P) =
−2∑∣P′∣

i=1 ∑∣P∣
j=1 n

p′i p j
i j log(n

p′i p j
i j n/(np′i

i n
p j
j ))

∑∣P′∣
i=1 n

p′i
i log(n

p′i
i /n)+∑∣P∣

j=1 n
p j
j log(n

p j
j /n)
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Figure 2: Two simple examples of modular complex networks.

where np′i
i represents the number of nodes in cluster p′i and n

p′i p j
i j denotes the number of the

shared elements between clusters p′i and p j. Obviously, 0 ≤ INMI ≤ 1 with INMI(P,P) = 1.
Note that this measure can compare two partitions with different number of communities.

3 Computational results
In this section, we do numerical experiments both on artificial networks and real net-

works. The algorithm is implemented in C++ and run on a 2.4G Hz Pentium 4 processor
using Microsoft Visual C++ compiler 6. The software is available upon request. In the
following experiments, the learning rate λ is initially set as 0.5 and linearly decreases
from 0.5 to 0.1. Actually, we observe that our approach is very robust to this parameter.

3.1 Experiment on simulated networks
We first test our method on two small networks depicted in Figure 2. For the small

network in Figure 2(a), our method can detect the two dense subgraphs as communities
(denoted by circles). Node 7 can belong to either the left community or the right com-
munity. In fact, the connection weight of node 7 to either community is not distinctly
larger. Such a case is very common in complex networks since some nodes are sparsely
connected with other nodes and do not form a community. For the small modular network
in Figure 2(b), the three apparent communities can be easily detected by our algorithm.
From these two small networks, we can see that our algorithm can efficiently identify
the underlying community structure, and especially is able to discard some sparsely con-
nected nodes according to their connection weights.

Then, we test our method on a set of benchmark computer-generated networks de-
signed in [3]. In this network set, each network has 128 nodes, which are divided into
4 communities of size 32 each. Edges are placed randomly with two fixed expectation
values kin and kout so as to keep the average degree of a node to be 16 and the average
kout of each node’s edge connecting to nodes in other communities. Figure 3 shows the
fraction of nodes that are classified into their correct communities with respect to kout by
our method, the optimization of modularity density D [13], and the spectral algorithm [9]
respectively. The performance of our method is a little better than that of spectral algo-
rithm and marginally worse than that of optimization of D. But our method is very fast
and its running time for each network is no more than 20 seconds, while the running time
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Figure 3: Comparison of the three methods on the computer-generated networks.

of solving the integer programming for optimization D is more than 1 minute [13]. This
indicates that our method can be used for large scale networks.

3.2 Experiment on real world networks
We also test our method on several famous real world networks. For example, for

the famous karate club network analyzed by Zachary [17], the self-organizing map can
detect a partition identical to the two friend groups (data not shown). The journal index
network constructed by Rosvall and Bergstrom [4] consists of 40 journals as nodes from 4
different fields: physics, chemistry, biology, and ecology and 189 links connecting nodes
if at least one article from one journal cites an article in the other journal during 2004. Ten
journals with the highest impact factor in the 4 different fields were selected. By using the
self-organizing map method, we can partition the network into 4 communities correctly
(see Fig 4). The method can also partition the network into two, or three modules if a
small upper bound m is used and the result is consistent with that in [4] and [13].

The college football network of the United States has also been widely used as a
benchmark test example in network science due to its natural community structure [3, 6,
13, 7]. It is the network representation of the schedule of Division I games for the 2000
season: The nodes in the network represent the 115 teams, while the edges represent
613 games played in the course of the year. The teams are divided into 13 conferences
containing around 8-12 teams each. The proposed self-organizing approach can partition
the network into conferences with a high degree of success, which is shown in Figure 5,
where the nodes with the same shapes and colors are teams in a same conference, and the
dense subgraphs in the layout are communities detected by our method. We can see that
the correct rate of our method is more than 91%. The detected partition is very near to
the real one since INMI(P′,P) = 0.9279. The modularity degrees characterized by Q (D)
on the original partition and on the detected partition are 0.5371 and 0.5811 (23.6900 and
38.9892), respectively, which means that the partition detected by our method is more
reasonable from the topological view point. It is worth noting that even the upper bound
m is set to be more than 13, for example, letting m = 14,15,16,17,18 and so on, we still
can obtain the same community structure, with some empty modules, which means that
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Figure 4: The detected community structure of the journal index network.
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Figure 5: The detected communities in the football network.
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Figure 6: The detected community structure of the Southern women network.

our method is not so dependent on the prior knowledge and initial value about the number
of communities.

3.3 Experiment on bipartite networks
Since there are many systems that are more suitable to represented as bipartite net-

works such as plant-animal mutualistic networks, scientific publication networks, and
artistic collaboration networks. Hence, it is needed to identify the communities in bipar-
tite networks. We observe that the self-organizing method can also detect communities in
such bipartite networks. During the 1930s, some ethnographers collected data on social
stratification in the town of Natchez, Mississippi [18]. They collected data on women’s
attendance to social events in the town and analyzed the resulting women-event bipartite
network in light of other social and ethnographic variables. In [19], the authors analyzed
the modules of this bipartite network by considering the projection of the bipartite net-
work into the women’s space and into the events’ space. In this paper, we used our method
to detect the communities in this bipartite network without projection. The partition re-
sult is shown in Figure 6, where circles represent women and diamonds represent social
events. All the women and events in the same side of the dash line consist of a community.
The partition captures the two-module structure of the network which coincides with the
original subjective partition proposed by the ethnographers who collected the data.

4 Conclusion and discussion
In this paper, we proposed a new community detection algorithm based on self-

organizing map. It can automatically organize a network into dense subgraphs without
any heuristic manipulation. Besides the efficiency and effectiveness both on weighted
and undirected networks, the self-organizing approach can also identify communities in
bipartite networks. In addition, this community detection algorithm is suitable for very
large networks without knowing the number of communities. In the future research, we
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will explore the application of this method to detect communities in biological networks
and general directed networks.

In this study, we simply use A+ I as the input matrix for the self-organizing map to
see if the underlying community structure of a complex network can be uncovered ac-
cording to such basic local connection information. The results indicate that the local
connection of nodes indeed can tell much if mined properly. As a future research topic,
it is interesting to examine other input data and give a systematic comparison, such as
Laplasian matrices A−D, D−1A, D−1/2AD−1/2 (D is the diagonal degree matrix), or any
other graph kernels. It is noted that although self-organizing maps have a similar scheme
with k-means, k-means cannot be directly applied to detect community structure of com-
plex networks [20]. It, like many other methods, needs to first map the network topology
into Euclidean vectors or other similarity vectors through some techniques, whereas this
is not prerequisite in our method. In addition, validation of our method on large-scale
inhomegenous benchmark networks is worth further exploration [11].
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