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Abstract Nonnegative Matrix Factorization (NMF) is one of the famous unsupervised learning
models. In this paper, we give a short survey on NMF-related models, including K-means, Proba-
bilistic Latent Semantic Indexing etc. and present a new Posterior Probabilistic Clustering model,
and compare their numerical experimental results on five real microarray data. The results show
that i) NMF using with K-L divergence objective function has better clustering performance; ii)
Our purposed PPC model is among the best.
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1 Introduction
Nonnegative Matrix Factorization (NMF) is one of unsupervised learning models used

for data mining. Generally speaking, NMF factorizes some nonnegative matrix X , which
often comes from biology, text or image, into two nonnegative matrices that satisfy X ≈
FGT . NMF has been successfully applied for data clustering, dimensional reduction,
image processing, etc. [15, 7, 1, 2, 13].

There are many papers that are devoted to analyze NMF from different perspectives.
In them, several variations of NMF are given and studied, and the equivalence between
NMF and other classical unsupervised learning models, such as K-means and Probabilis-
tic Latent Semantic Indexing, are proved [3, 4]. In this submission, we give a short survey
on five NMF-related models. Furthermore, we also present a new variation of NMF,
called Posterior Probabilistic Clustering (PPC). Experiment results show that PPC can
give better results. In summary, The contributions of this submission are three folds: (1)
A new posterior probabilistic clustering model is presented; (2) A short survey on differ-
ent NMF-related models is given; (3) A systematic comparison on the different models
used for microarray data is given. Results show that our purposed PPC model is valuable
and competitive.

The rest of the paper is organized as follows: Section 2 is a survey on different NMF-
related models; Section 3 gives a systematic comparison of the different models on five
microarray datasets. Section 4 concludes and discusses the future work.
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2 A Short Survey on NMF-related Models for Tumor Clus-
tering

In this section, we give a brief survey on NMF-related models, including K-means,
Probabilistic Latent Semantic Indexing, nsNMF. We also give a new model called Poste-
rior Probabilistic Clustering.

Nonnegative Matrix Factorization, NMF ([9, 10]): In general,
NMF can be written as:

min J(X ,FGT )

s.t. F,S,G ⩾ 0.

J(X ,FGT ) is some distance function or dissimilarity function between two matrices X
and FGT . F and G are updated alternately until convergence.

If the least square error ∥X −FGT∥2
F is selected as objective function J to optimize,

the corresponding update rules of F and G are:

Fia := Fia
(XG)ia

(FGT G)ia

Gia := Gia
(XT F)ia

(GFT F)ia

Otherwise, if the K-L divergence ∑
i, j
(Xi j log

Xi j

(FGT )i j
−Xi j +(FGT )i j) is selected to opti-

mize, the rules of F and G are:

Fia :=
Fia

∑
j

G ja
∑

j

Xi j

(FGT )i j
G ja (1)

G ja :=
G ja

∑
i

Fia
∑

i

Xi j

(FGT )i j
Fia (2)

K-means: [3] shows that NMF that factorizes symmetric matrix X , which is the sim-
ilarity matrix of the original samples, with orthogonal constraints on the factor matrices
F (or G) is equivalent to K-means.

Probabilistic Latent Semantic Indexing, PLSI ([6]): PLSI is
one of the topic models that are successfully applied to information retrieval. [4] shows
that PLSI and NMF optimize the same objective function (K-L divergence) while use
different update rules. If X is normalized to satisfy ∑

i j
Xi j = 1, the model can be written

as:

min ∑
i, j
(Xi j log

Xi j

(FSGT )i j
−Xi j +(FSGT )i j) (3)

s.t. F,S,G ⩾ 0 (4)

∑
i

Fik = 1,∑
j

G jk = 1,∑
k

Skk = 1. (5)
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S is diagonal. Our results show that the update rules of F and G in PLSI are indeed got
from NMF simply by normalizing F and G in Eq.(1),(2) at each iteration. Details will
come in our future work.

Nonsmooth NMF, nsNMF ([11]): nsNMF optimizes X = FSGT instead of

X = FGT , where S = (1−θ)I+
θ
k

IIT , I is the identity matrix and the parameter θ is used
to control the sparseness of both F and G. More details can be found in [11].

Posterior Probabilistic Clustering: Different from PLSI, which treat-
s the factor matrices F, S and G as class-conditional probabilistic matrices, i.e., F, S and G
satisfy the condition (5), PPC ([5]) regards F, S and G as posterior probabilistic matrices,
i.e., ∑

k
Fik = 1,∑

k
G jk = 1,∑

k
Skk = 1. To simplify the model, we only add constraint on G.

Different from [5], we select K-L divergence as objective function and we briefly give the
algorithms of PPC. Details of motivations of PPC and convergence analysis will come
soon in our future work.

The model can be written as:

(PPC) min
F,G⩾0

∑i, j(Xi j log Xi j
(FGT )i j

−Xi j +(FGT )i j)

s.t.
K
∑

k=1
G jk = 1, j = 1,2, ⋅ ⋅ ⋅ ,n.

Mimic the derivative process of PLSI, we can get the update rules of F and G.

G jk =
G jk

∑
j

Fjk ∑
k

G jk
∑

i

Xi jFik

(FGT )i j

=
G jk(

XT F
GFT ) jk

∑
i

Fik ∑
k
[
G jk(

XT F
GFT ) jk

∑
i

Fik
]

,

and the update rule of F is the same as the standard NMF:

Fik :=
Fik

∑
j

G jk
(

X
FGT G)ik

Details will also come in our future work.
Note that a detailed analysis of PPC using with Lease Squares Error will also come

soon in our future work. For short, we employ penalty function algorithm to solve the
model. The numerical results are listed in Table 1 and Table 2

3 Experiment on Microarray Data
In this section, we give a systematic comparison of different models on five microarray

datasets. The results show that our proposed PPC model is competitive.
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3.1 Data Description
We use five datasets to assess the performance of the six models. Note that "Subtypes

of Acute Lymphoblastic Leukemia" includes two datasets "BCR-ABL/E2A-PBX1/MLL"
and "Hyperdip50/MLL/T-ALL"

ALL-AMLThis dataset includes two types of human tumor-acute myelogenous leuke-
mia (AML, 11 samples) and acute lymphoblastic leukemia (ALL, 27 samples). Also ALL
can be divided into two subtypes-ALL-T(8 samples) and ALL-B(19 samples).[1]

Central Nervous System(CNS) This dataset comes from [12] which con-
sists of 34 samples: 10 classic medulloblastomas, 10 malignant, gliomas, 10 rhabdoids
and 4 normals.

Lung cancer (LC) This dataset, composed of 32 samples, is from [8] which is
about malignant pleural mesothelioma (MPM, 16 samples) and adenocarcinoma (ADCA,
16 samples) of the lung.

Subtypes of Acute Lymphoblastic Leukemia: This dataset includes
six prognostically important leukemia subtypes: T-ALL, E2A-PBX1, BCR-ABL, TEL-
AML1, MLL, hyperdiploid>50 chromosomes. We select E2A-PBX1 (18 samples), MLL
(14 samples), T-ALL (28 samples) as one test dataset, and E2A-PBX1 (18 samples),
Hyperdiploid>50 (42 samples), T-ALL (28 samples), TEL-AML1 (52 samples) as an-
other. The original data contains about 12000 genes. In our experiment, the genes are
ranked according to their coefficient of variation (i.e., standard deviation divided by the
mean) and the top 5000 are selected.

3.2 Experiment Results
In order to compare the clustering performance, we use Normalized Mutual Informa-

tion (NMI) and Accuracy(ACC) as our performance measures.
NMI is computed as:

NMI =
∑i, j P(i, j)log2

P(i, j)
P(i)P( j)√

(∑i−P(i)log2P(i))(∑ j −P( j)log2P( j))
, (6)

where P(i) is the probability that an arbitrary data point belongs to computed class i, and
P( j) is the probability that an arbitrary data point belongs to implanted class j. P(i, j)
is the joint probability that an arbitrary data point belongs to cluster i and also class j.
Details can be found at [14]. Generally, the larger the NMI value, the better the clustering
quality is. Its value is between 0 and 1.

Accuracy is computed as:

ACC = max( ∑
Ck,Lm

T (Ck,Lm))/N, (7)

where Ck is the k-th computed class, and Lm is the m-th ground-truth class. T (Ck,Lm)
is the number of samples that belong to class m are assigned to cluster k. Generally, the
larger the accuracy value, the better the clustering performance.

All the algorithms are performed by MATLAB 7.6.0.324. The parameter θ in nsNMF
is 0.5, as recommended by the original paper [11]. All the results are averages of ten runs
of the algorithms.
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Table 1: Accuracy Comparisons on various datasets. Each entry is the percentage of
clustering accuracy of the column method on the corresponding row dataset. "NMF1"
denotes "NMF using with least squares error" and "NMF2" denotes "NMF using with K-
L divergence". "PPC1" denotes "PPC using with least squares error" and "PPC2" denotes
"PPC using with K-L divergence". The bold ones are the best results that are got from
methods based on K-L divergence, while the underlined ones are the best results got from
least squares error.

K-means NMF1 NMF2 PLSI nsNMF PPC1 PPC2
Multi-class I 64.63 72.20 75.37 68.05 61.71 74.15 75.37
Multi-class II 57.86 66.43 72.50 77.86 72.98 72.50 72.38
Lung Cancer 76.56 93.75 100.00 100.00 100.00

√
81.25 100.00

AML/ALL2 74.47 96.58 95.00 94.74 94.74 80.00 97.37
AML/ALL3 89.21 95.26 95.53 92.11 94.74 77.63 94.74

CNS 77.06 96.47
√

94.41 94.12 93.24 93.82 94.12

Table 2: NMI Comparisons on various datasets. Each entry is the percentage of clustering
NMI of the column method on the corresponding row dataset. "NMF1", "NMF2", "PPC1"
and "PPC2" have the same meanings in Tab 1. The bold ones and the underlined ones also
have the same meanings in Tab 1.

K-means NMF1 NMF2 PLSI nsNMF PPC1 PPC2
Multi-class I 42.58 44.49 46.20 37.13 28.23 47.32 45.99
Multi-class II 12.78 36.87 53.59 55.51 44.41 38.62 49.11
Lung Cancer 34.12 71.69 100.00 100.00 100.00

√
42.75 100.00

AML/ALL2 33.87 77.79 71.91 70.80 70.80 21.33 81.13
AML/ALL3 75.42 83.25 83.61 74.98 80.78 39.84 81.59

CNS 66.57 91.08
√

86.55 85.87 89.38 84.81 85.20

Table 1 and Table 2 demonstrate the accuracy and NMI comparison results of different
methods, from which we can observe that: (1) K-means is always the worst; (2) for
microarray datasets, the methods that use K-L divergence as objective function are better
than that use least squares error almost all the times (CNS is the only exception); (3)
NMF2 and PPC2 are the winners. For three out of six dataset, they give the best results.

4 Conclusion and Future Works
In this paper, we give a short survey including six models for regulations on NMF. We

present a posterior probability clustering model. We also give a systematic comparison of
the six models on five real-world datasets coming from biology society. The results show
that our proposed model PPC is a valuable and competitive one among the six models.
Hence a further study of PPC is of interest.

As to future work, we can generalize PPC to simultaneous feature and sample clus-
tering. We use F as the posterior probability for feature clustering, and the posterior
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probability normalization is
K
∑

k=1
Fik = 1. The simultaneous PPC (SPPC) becomes

min
F,S,G⩾0

J(X ,FSGT ),

s.t.
K

∑
k=1

Fik = 1,
K

∑
k=1

G jk = 1,

where J(X ,FSGT ) can be conventional least squares error or K-L divergence, the corre-
sponding algorithms can be derived similarly to PPC.

For example, if K-L divergence is selected, the update rules of F,S and G are:

G jk := G jk

(
XT

GSFT FS) jk

∑
k

G jk(
XT

GSFT FS) jk

= G jk

(
XT

GSFT FS) jk

(GSFT X
FSGT ) j j

Fjk := Fjk

(
X

FSGT GS) jk

(FSGT XT

GSFT ) j j

Skk := Skk(FT X
FSGT G)kk.

Acknowledges
This work is supported by the National Natural Science Foundation of China under

grant No.60873205 and Foundation of Academic Discipline Program, Central University
of Finance and Economics.

References
[1] J. P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern

discovery using matrix factorization. Proc Natl Acad Sci U S A, 101(12):4164–4169, March
2004.

[2] Karthik Devarajan. Nonnegative matrix factorization: An analytical and interpretive tool in
computational biology. PLoS Comput Biol, 4(7):e1000029+, July 2008.

[3] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization
and spectral clustering. In SIAM Data Mining Conf, pages 606–610, 2005.

[4] C. Ding, T. Li, and W. Peng. Nonnegative matrix factorization and probabilistic latent se-
mantic indexing: Equivalence chi-square statistic, and a hybrid method. Proceedings of the
National Conference on Artificial Intelligence, 21(1):342, 2006.

[5] Chris Ding, Tao Li, Dijun Luo, and Wei Peng. Posterior probabilistic clustering using nmf. In
SIGIR ’08: Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 831–832, New York, NY, USA, 2008. ACM.

46 The 3rd International Symposium on Optimization and Systems Biology



[6] Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR ’99: Proceedings of the
22nd annual international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 50–57. ACM Press, 1999.

[7] P. O. Hoyer. Non-negative sparse coding. In Neural Networks for Signal Processing, 2002.
Proceedings of the 2002 12th IEEE Workshop on, pages 557–565, 2002.

[8] Gordon G. J, Jensen R. V, Hsiao L. L, Gullans S. R, Blumenstock J. E, Ramaswamy S,
Richards W. G, Sugarbaker D. J, and Bueno R. Translation of microarray data into clinically
relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma.
Cancer Res., 62(17):4963–7, September 2002.

[9] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, October 1999.

[10] Daniel D. Lee and Sebastian H. Seung. Algorithms for non-negative matrix factorization. In
Annual Conference on Neural Information Processing Systems, pages 556–562, 2000.

[11] A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. Pascual-Marqui. Nons-
mooth nonnegative matrix factorization (nsnmf). IEEE transactions on Pattern Analysis and
Machine Intelligence, 28(3):403–415, March 2006.

[12] Scott L. Pomeroy, Pablo Tamayo, Michelle Gaasenbeek, Lisa M. Sturla, Michael Angelo,
Margaret E. Mclaughlin, John Y. H. Kim, Liliana C. Goumnerova, Peter M. Black, Ching
Lau, Jeffrey C. Allen, David Zagzag, James M. Olson, Tom Curran, Cynthia Wetmore, Ja-
clyn A. Biegel, Tomaso Poggio, Shayan Mukherjee, Ryan Rifkin, Andrea Califano, Gustavo
Stolovitzky, David N. Louis, Jill P. Mesirov, Eric S. Lander, and Todd R. Golub. Prediction
of central nervous system embryonal tumour outcome based on gene expression. Nature,
415(6870):436–442, January 2002.

[13] Farial Shahnaz, Michael W. Berry, Paul V. Pauca, and Robert J. Plemmons. Document clus-
tering using nonnegative matrix factorization. In Journal on Information Processing and
Management, volume 42, 2004.

[14] Alexander Strehl and Joydeep Ghosh. Cluster ensembles: a knowledge reuse framework for
combining partitionings. In Eighteenth national conference on Artificial intelligence, pages
93–98, Menlo Park, CA, USA, 2002. American Association for Artificial Intelligence.

[15] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix
factorization. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR con-
ference on Research and development in informaion retrieval, pages 267–273, New York,
NY, USA, 2003. ACM Press.

NMF-based Models for Tumor Clustering: A Systematic Comparison 47


