
Finite-Horizon Control of Genetic Regulatory
Networks with Multiple Hard-Constraints

Wai-Ki Ching∗ Yang Cong†

Advanced Modeling and Applied Computing Laboratory,
Department of Mathematics, The University of Hong Kong, Hong Kong.

Abstract Probabilistic Boolean Networks (PBNs) provide a convenient tool for studying the in-
teractions among different genes while allowing uncertainty. This paper deals with the issue of
finite-horizon control with multiple hard-constraints in a PBN. More precisely, under the constraint
of the number of times that each control method can be applied, we develop a control strategy by
which the state of a given genetic network falls into a desired state set with a prescribed minimum
probability. We propose an efficient algorithm to find the feasible solutions. An upper bound for
the computational cost is also given. An numerical experiment is then conducted to demonstrate
the efficiency of our proposed method.
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1 Introduction
In computational system biology, building mathematical models and efficient numer-

ical algorithms to study regulatory interactions among DNA, RNA, proteins and small
molecules are important issues [2, 18]. There have been many mathematical models pro-
posed to study genetic regulatory networks such as Bayesian networks [17], Boolean
networks (BNs) [13, 14], multivariate Markov chain model [4], regression model [7],
Probabilistic Boolean Networks(PBNs) [22, 23, 24, 25] and reviews on other mathemat-
ical models can be found in [19, 27]. Among these models, BN and its extension PBN
have received much attention as they can capture the switching behavior of the biological
process [18].

Boolean networks (BNs) are introduced by Kauffman [13, 14, 15, 16]. A Boolean
Network G(V,F), consists of a set of vertices V = {v1,v2, . . . ,vn}, where vi(t) is the
expression state for gene i at time t. We quantize vi(t) to only two levels: on and off
(represented by 1 and 0). We define F = { f1, f2, . . . , fn} as a set of Boolean functions
( fi : {0,1}n →{0,1}) to represent the rules of the regulatory interactions among the genes:
vi(t+1)= fi(v(t)). Here v(t)= (v1(t),v2(t), . . . ,vn(t))t is called the Gene Activity Profile
(GAP). The GAP can take any possible form from the set

S = {(v1,v2, . . . ,vn)
T : vi ∈ {0,1}} (1)
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and totally there are 2n possible states.
A BN is indeed a deterministic model and the only randomness comes from its initial

state. Given an initial state, the BN will eventually enter into a set of state(s) called at-
tractor cycle and stay there forever [1, 13, 14]. The attractors have biological significance
such as states of cell proliferation or cell apoptosis [12]. However, genetic regulation pro-
cess exhibits uncertainty and microarray data sets used to infer the model have errors due
to experimental noise in the complex measurement process. Thus it is more realistic to
consider stochastic models. To extend BNs to PBNs, the main idea is as follows. To de-
termine vi the state of gene i, i = 1,2, . . . ,n, there can be more than one Boolean function
f (i)j ( j = 1,2, . . . , l(i)) to be chosen. Here 1 ≤ l(i) ≤ 22n

is the total number of possible

Boolean functions for gene i. The probability of choosing f (i)j as the predictor function is

c(i)j , where 0 ≤ c(i)j ≤ 1 and
l(i)

∑
j=1

c(i)j = 1. (2)

One can estimate the probability c(i)j by the statistical method Coefficient of Determi-

nation (COD) with real gene expression data sets [11]. There are at most N =
n

∏
i=1

l(i)

different possible realizations of BNs. Let f j be the jth possible realization,

f j = ( f (1)j1
, f (2)j2

, . . . , f (n)jn ), 1 ≤ ji ≤ l(i). (3)

Then in an independent PBN (the selection of the Boolean function for each gene is
assumed to be independent), the probability of choosing the corresponding BN is given

by q j =
n

∏
i=1

c(i)ji , j = 1,2, . . . ,N. We note that the transition process among the states in the

set S is a Markov chain process. Let a and b be any two column vectors (can be the same)
in the set S. Then the transition probability from state b to state a is

Prob {v(t +1) = a ∣ v(t) = b}

=
N

∑
j=1

Prob {v(t +1) = a ∣ v(t) = b, the jth network is selected } ⋅q j. (4)

By computing the transition probability for all the possible states in S, we can obtain the
transition probability matrix A of the PBN. In fact, the transition probability matrix A can

be written as the sum of the Boolean network matrices Ai, A =
N

∑
i=1

qiAi, see for instance

[5].
In a PBN, the steady-state probability distribution provides its first-order statistical

information, through which one can understand a genetic network and identify the influ-
ence of different genes in such a network. Power method has been used to compute the
steady-state probability distribution with an efficient construction of the transition prob-
ability matrix [28]. A matrix approximation method has been proposed in [8] to get an
approximation of the steady-state probability distribution.
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Furthermore, it is possible to control some genes in a network to drive the whole
network into a desirable steady-state probability distribution. In [26], the potential ef-
fect of individual gene on the global dynamical network behavior is studied, by means
of random gene perturbation and intervention. The effect of altering the the rule-based
structure is discussed in [23]. To achieve relatively more permanent effect of intervention,
optimal control theory finds its application. In [9], an optimal finite-horizon control prob-
lem for gene intervention is formulated as a minimization problem with penalty costs.
The penalty costs include both control cost and cost of the terminal states. The control
cost is defined as the cost of applying control inputs in some particular states. Relatively
higher terminal costs are assigned to those undesirable states. Thus the optimal control
policy is the one which minimizes the overall expected costs. One can obtain the opti-
mal control strategy by dynamic programming method. Other control problems such as
imperfect information, context-sensitive PBN and infinite-horizon control are discussed
in [10, 20, 21] separately. In [3], an algorithm is proposed to study the problem of con-
trolling a gene network (without state feedback) such that it reaches a target state set with
a prescribed maximum or minimum probability. The algorithm in [3] stops whenever a
optimal solution is obtained regardless of the length of the control horizon. If there is no
optimal solution, the algorithm will run infinite times.

All the above optimal control formulations did not consider the case of hard-constraint,
i.e. to include an upper bound for the number of controls. In case of disease such as can-
cer, control inputs can be medication, radiation etc. They are typically applied during a
period. And some treatments such as radiation can not be applied too many times. [6]
fills that blank by studying an optimal finite-horizon problem with hard-constraint. It dis-
cusses the problem with one control variable. Observing that usually there are more than
one treatment methods applied together, we study finite-horizon external control problem
with multiple hard-constraints. In [3], the authors focus on leading the network to fall
into a desirable state set with a prescribed minimum or maximum probability. Here we
set minimizing the cost of the control strategy as the objective, meanwhile adopt the idea
in [3] as a criteria. Apart from the finite-horizon control problem with multiple hard-
constraints, we provide a more effective algorithm in generating all the feasible control
strategies than that proposed in [6]. We remark that our proposed formulation can be
applied to both perturbed and context-sensitive PBNs, though we only discuss examples
of instantaneously random PBNs. Here we point that the number of possible states in the
network increases exponentially with respect to the number of genes n, thus the compu-
tational cost for solving the optimal control problem can be enormous even for moderate
n. It has been shown that finding a control strategy for a BN to a global state is actually
NP-hard [1].

The remainder of the paper is structured as follows. In Section 2, we introduce our
optimal finite-horizon control problem with multiple hard-constraints. In section 3, nu-
merical examples are given to demonstrate the efficiency of our proposed method. Finally,
concluding remarks are given to address further research issues in Section 4.

2 Problem Formulation
In this section, we give a mathematical formulation for our optimal control problem

with multiple hard-constraints. Our goal is to find an optimal strategy for manipulating
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external control variables to desirably affect the dynamic evolution of a random PBN over
a finite time horizon with the minimum corresponding cost.

Without loss of generality, here we consider the case of two control methods. Then at
each time point t, t = 1,2, . . . ,T , one of the followings three control options will be con-
ducted: Control 0 (i.e. no control), Control 1 and Control 2, represented by u0, u1 and u2
respectively. Their corresponding transition probability matrices P0,P1,P2 are given. The
optimal control problem can be stated as follows. Given an initial probability distribution
x0 and a set of target states S′ ⊆ S, our goal is to find a sequence of actions σ that lead the
system reaching a target state with a minimum probability p̄ over a finite time horizon T
(i.e. ∑

i∈S′
[xT ]i ≥ p̄) while minimizing the sum of the costs of the control actions applied at

each time point
T

∑
i=1

C(σi). Thus we obtain the following optimal control problem:

min
σ

T

∑
i=1

C(σi)

subject to
⎧
⎨
⎩

∑i∈S′ [xT ]i ≥ p̄,
0 ≤ s1 ≤ K1,
0 ≤ s2 ≤ K2.

(5)

Here si is the number of times that Control i is conducted, and Ki is the maximum number
of times that Control i can be applied, i = 1,2. We use i j ∈ {0,1,2} to represent that
Control i j is applied to the network at time j. Then control string i1i2 . . . ik represents the
control actions conducted from time 1 to time k. We define set

U = {σ = i1i2 . . . iT : i j ∈ {0,1,2}, and 0 ≤ si ≤ Ki}
as the set containing all the possible control strategies satisfying the multiple hard-constraints.
Given the initial probability distribution vector x0, state probability distribution vector
xT = PiT . . .Pi1x0 represents the state distribution vector at time T obtained by control
strategy σ = i1i2 . . . iT . The feasible solution set V is a subset of set U , where

V = {σ ∈U : ∑
i∈S′

[xT ]i ≥ p̄}.

Finally, optimal solution exists if the set V is not empty, and there can be more than one
optimal solutions. Any control strategy in the set V with minimum corresponding cost is
an optimal solution.

The main computational cost comes from the matrix-vector multiplication. For each
control strategy, the number of matrix-vector multiplication is T . If we search an optimal
solution in the set W = {σ = i1i2 . . . iT : i j ∈ {0,1,2}} the cost is O(T 3T 22n), where n is
the number of genes in the network. However, we only need to consider those strategies
in set V , this reduces the computational and storage costs. It’s hard to estimate the number
of elements in the set V . But we know there are totally

M =
K2

∑
j=0

(
C j

T

K1

∑
i=0

Ci
T− j

)
=

K2

∑
j=0

K1

∑
i=0

T !
i! j!(T − i− j)!

(6)
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control strategies in set U ⊇V . Thus MT 22n is an upper bound of the computational cost.

2.1 Algorithm for Finding Feasible Solutions
In order to find the feasible solution set for the optimal control problem with hard-

constraint, [6] applied a recursive method as follows. They first start with set {0,1},
which contains all the possible control strategies at time t = 1, then one can obtain set
{00,10,01,11} for time t = 2. Recursively one can get the feasible solution set. However,
our problem involves more than one control methods under hard-constraints. Thus here
we introduce a more efficient method. Note that

V = {σ ∈U : ∑
i∈S′

[xT ]i ≥ p̄},

one can get the feasible solution set V by checking whether the state probability distribu-
tion obtained by any control string in the set U satisfies the constraint ∑i∈S′ [xT ]i ≥ p̄. Thus
the key point is to generate the set U, the set of all possible control strategies satisfying
the hard-constraints.

We first assume that the number of times that Control 2 is applied is fixed as k,0 ≤ k ≤
K2. We reserve k places in the control string of length T for Control 2, there are totally
Ck

T cases. Then we only need to find all the control strings of length T − k where Control
0 (i.e. no control) and Control 1 can be applied and the maximum number of times that
Control 1 can be applied is K1. Now the method in [6] can be applied. However, in
order to save memory and promote efficiency, we apply the following method. We note
that among all the possible control strings, binary string 11 . . .1︸ ︷︷ ︸

K1

00 . . .0︸ ︷︷ ︸
T−K1−k

is the biggest one.

Thus by translating decimal digits from 0 to 2T−k − 1 to binary digits and checking the
number of times that Control 1 is applied, we can generate all the control strings of length
T − k satisfying the hard-constraint for Control 1. Finally we can obtain the set U by
increasing k from 0 to K2.

3 Numerical Examples
In this section, we present an numerical example using a hypothetical gene network

to illustrate the application of the proposed algorithm. The network is consist of two
genes denoted by A and B, induced by a certain biological signal. The states of genes
A and B are given in Table 1. There are three external control methods: (i) Control
0 (no control): chemical signal absent, (ii) Control 1: chemical signal present in low
concentration, and (iii) Control 2: chemical signal present in high concentration. Their
corresponding transition probability matrices are given as follows.

P0 =

⎛
⎜⎜⎝

0.7 0.4 0.4 0.0
0.0 0.3 0.0 0.5
0.3 0.0 0.5 0.3
0.0 0.3 0.1 0.2

⎞
⎟⎟⎠ ,P1 =

⎛
⎜⎜⎝

0.3 0.1 0.0 0.0
0.1 0.0 0.4 0.1
0.4 0.5 0.4 0.1
0.2 0.4 0.2 0.8

⎞
⎟⎟⎠ ,

P2 =

⎛
⎜⎜⎝

0.1 0.0 0.0 0.0
0.3 0.1 0.2 0.3
0.3 0.4 0.5 0.4
0.3 0.5 0.3 0.3

⎞
⎟⎟⎠ .

(7)
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State A P
1 Off Off
2 Off On
3 On Off
4 On On

Table 1: State of Gene A and Product P.

k Control Strategy σ = i1i2 . . . iT Cost

k = 0
0 0 0 1 0 0 1 1 1 1
0 0 0 0 1 0 1 1 1 1
0 0 0 0 0 1 1 1 1 1

12.5

k = 1 0 0 0 0 0 0 2 1 1 1 11.5

k = 2

0 0 0 0 0 2 2 1 1 1
0 0 0 0 2 0 2 1 1 1
0 0 0 2 0 0 2 1 1 1
0 0 2 0 0 0 2 1 1 1
0 2 0 0 0 0 2 1 1 1
2 0 0 0 0 0 2 1 1 1

15.5

Table 2: Sub-optimal Control Strategies Under Different k.

Our objective is to find a control strategy that ensures the total probability of gene
A being expressed is at least 0.8 (i.e., x3 + x4 ≥ 0.8) with the minimum cost, given an
initial state distribution of x0 = (0.1,0.4,0.3,0.2)t . The maximum numbers of times that
Control 1 and Control 2 can be conducted are K1 = 5 and K2 = 2 respectively. The cost
for conducting Control 1 is 2.5, the cost for Control 2 is 4, and no cost for Control 0.
Table 2 lists the strategies obtained with minimum cost for each fixed k from 0 to K2 = 2,
where k is the number of times that Control 2 is conducted.

From Table 2, there is only one optimal control strategy: conduct Control 2 at time
point t = 7 and Control 1 at time point t = 8,9,10, the total cost is 11.5 and the corre-
sponding state probability distribution vector is xT = (0.0275,0.1682,0.2679,0.5364)t .

4 Concluding Remarks
In this paper, we introduce a new optimal finite-horizon control problem with multiple

hard-constraints. Beyond this originality, we proposed an efficient algorithm to generate
all the feasible solutions. An upper bound for the computational cost is also given. Our
formulation can be applied to both perturbed and context-sensitive PBNs though we only
test it with the instantaneously random PBNs. Since the control problem is NP-hard, in
further research we will consider the control problem with multiple hard-constraints for
large scale genetic networks. Extending our formulation to infinite-horizon is another
future research topic.
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