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Abstract This paper presents a new formulation of multi-instance learning as maximum margin
problem, which is an extension of the standard C-support vector classification. For linear classi-
fication, this extension leads to, instead of a mixed integer quadratic programming, a continuous
optimization problem, where the objective function is convex quadratic and the constraints are ei-
ther linear or bilinear. This optimization problem is solved by an iterative strategy solving a convex
quadratic programming and a linear programming alternatively. For non-linear classification, the
corresponding iterative strategy is also established, where the kernel is introduced and the related
dual problems are solved. The preliminary numerical experiments show that our approach is com-
petitive with the others.
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1 Introduction
Multi-instance learning (MIL) is a growing field of research in machine learning. The

term multi-instance learning was coined by Dietterich et al.[1] when they were investi-
gating the problem of drug activity prediction. In the MIL problem, the training set is
composed of many bags each involves in many instances. A bag is positively labeled if it
contains at least one positive instance; otherwise it is labeled as a negative bag. The task
is to find some decision function from the training set for correctly labeling unseen bag.

So far, the MIL has been studied in many fields, e.g. in [2, 3, 4]. An increasing num-
ber of methods have been developed to solve MIL problems, e.g. [5, 6, 7]. In this paper,
inspired by [8, 10], we propose a new formulation of MIL as maximum margin problem,
which is an extension of the standard C-support vector classification (C-SVC). For linear
classification, this extension leads to, instead of a mixed integer quadratic programming,
a continuous optimization problem, where the objective function is convex quadratic and
the constraints are either linear or bilinear. This optimization problem is solved by an
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iterative strategy solving a convex quadratic programming and a linear programming al-
ternatively. For non-linear classification, the corresponding iterative strategy is also es-
tablished, where the kernel is introduced and the related dual problems are solved. The
preliminary numerical experiments show that our approach is competitive with other for-
mulations.

2 Multi-instance SVM
Muliti-instance learning problem: Suppose there is a training set

{(X1,y1), ⋅ ⋅ ⋅ ,(Xl ,yl)}, (1)

where, when y1 = 1, Xi = {xi1, ⋅ ⋅ ⋅ ,xil} is call as positive bag and (Xi,yi) implies that
there exists at least one instance with positive label in Xi; when yi =−1, Xi = {xi1, ⋅ ⋅ ⋅ ,xili}
is called as negative bag and there exists no any instance with positive label in Xi. The
task is to find a function g(x) such that the label of any instance in Rn can be deduced by
the decision function

f (x) = sgn(g(x)). (2)

2.1 Linear Multi-instance SVM
The training set (1) is represented as

T = {(X1,y1), ⋅ ⋅ ⋅ ,(Xp,yp),(xr+1,yr+1), ⋅ ⋅ ⋅ ,(xr+s,yr+s)}, (3)

where y1 = ⋅ ⋅ ⋅ = yp = 1, yr+1 = ⋅ ⋅ ⋅ = yr+q = −1, (Xi,yi) = (Xi,1) implies that there
exists at least one instance with positive label in Xi = {x j∣ j ∈ I(i)} and (xi,yi) = (xi,−1)
implies that the label of the instance xi is negative.

Suppose the separating superplane is given by

(w ⋅ x)+b = 0. (4)

Note that it has been pointed out by [10] that the constraint

max
j∈I(i)

(w ⋅ x j)+b ≥ 1 (5)

is equivalent to the fact that there exist convex combination coefficients vi
j ≥ 0, ∑

j∈I(i)
vi

j = 1

{vi
j∣ j ∈ I(i)}, such that

(w ⋅ ∑
j∈I(i)

vi
jx j)+b ≥ 1. (6)

Thus, introducing slack variable ξ = (ξ1, ⋅ ⋅ ⋅ ,ξp,ξr+1, ⋅ ⋅ ⋅ ,ξr+s)
T and the penalty param-
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eters C1 and C2, maximum margin principle leads to

min
w,b,v,ξ

1
2
∥w∥2 +C1

p

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi, (7)

s.t. (w ⋅ ∑
j∈I(i)

vi
jx j)+b ≥ 1−ξi, i = 1, ⋅ ⋅ ⋅ , p, (8)

(w ⋅ xi)+b ≤−1+ξi, i = r+1, ⋅ ⋅ ⋅ ,r+ s, (9)
ξi ≥ 0, i = 1, ⋅ ⋅ ⋅ , p,r+1, ⋅ ⋅ ⋅ ,r+ s, (10)
vi

j ≥ 0, j ∈ I(i), i = 1, ⋅ ⋅ ⋅ , p, (11)

∑
j∈I(i)

vi
j = 1, i = 1, ⋅ ⋅ ⋅ , p. (12)

For solving the problem (7)–(12), we get the following algorithm:

Algorithm 1. (Linear Multi-instance Support Vector Classification)

(1) Given a training set (3);
(2) Select proper penalty parameters C1,C2 > 0;

(3) Select initial values {vi
j}, and denote it as vi

j(1), e.g select vi
j(1) =

1
∣I(i)∣, j ∈

I(i), j = 1, ⋅ ⋅ ⋅ , p, where ∣I(i)∣ stands for the number of the element in the set I(i),
i.e. the number of the instances in the positive bag Xi. Set k = 1;

(4) Compute w(k) from {vi
j(k)}: First, construct the series x̄1, ⋅ ⋅ ⋅ , x̄p, x̄r+1, ⋅ ⋅ ⋅ , x̄r+s by

x̄i = ∑
j∈I(i)

vi
jx j, i = 1, ⋅ ⋅ ⋅ , p, (13)

x̄i = xi, i = r+1, ⋅ ⋅ ⋅ ,r+ s, (14)

where vi
j is substituted by vi

j(k). Then solve the convex quadratic programming

min
α

1
2

p

∑
i=1

p

∑
j=1

yiy j(x̄i ⋅ x̄ j)αiα j +
1
2

p

∑
i=1

r+s

∑
j=r+1

yiy j(x̄i ⋅ x̄ j)αiα j

+
1
2

r+s

∑
i=r+1

p

∑
j=1

yiy j(x̄i ⋅ x̄ j)αiα j +
1
2

r+s

∑
i=r+1

r+s

∑
j=r+1

yiy j(x̄i ⋅ x̄ j)αiα j

−
p

∑
i=1

α j −
r+s

∑
i=r+1

α j, (15)

s.t.
p

∑
i=1

yiαi +
r+s

∑
i=r+1

yiαi = 0, (16)

0 ≤ αi ≤C1, i = 1, ⋅ ⋅ ⋅ , p, (17)
0 ≤ αi ≤C2, i = r+1, ⋅ ⋅ ⋅ ,r+ s, (18)

and get the solution ᾱ = (ᾱ1, ⋅ ⋅ ⋅ , ᾱp, ᾱr+1, ⋅ ⋅ ⋅ , ᾱr+s)
T . At last, compute w̄ by

w̄ =
p

∑
i=1

ᾱiyix̄i +
r+s

∑
i=r+1

ᾱiyix̄i, (19)
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and take it as w(k);
(5) Compute {vi

j(k+ 1)} from w(k): Solve the linear programming with the variable
{vi

j}, b and ξ obtained from problem (7)–(12) by taking w=w(k). Take its solution
{vi

j} with respect to v as {vi
j(k+1)};

(6) Compare {vi
j(k+1)} to {vi

j(k)}. When their difference is small enough, construct
the decision function

f (x) = sgn((w∗ ⋅ x)+b∗), (20)

where w∗ = w(k) and b∗ is the just obtained solution b̄ with respect to b to the linear
programming in step (5). And stop; Otherwise, set k = k+1, go to step (4).

2.2 Nonlinear Multi-instance SVM
Using a kernel function K(x,x′), the general multi-instance support vector classifica-

tion is obtained by extending the linear multi-instance support vector classification. In
fact, in order to arrive nonlinear separation, introduce the map

Φ :
Rn → H ,

x → x = Φ(x). (21)

Let the separating superplane in the Hilbert space H be

(w ⋅x)+b = 0. (22)

For a positive bag Xi, the convex combination ∑
j∈I(i)

vi
jΦ(x j) of the images {Φ(x j)∣ j ∈

I(i)} is considered. Thus, corresponding to the problem (7)–(12), we should solve the
optimization problem

min
w,b,v,ξ

1
2
∥w∥2 +C1

p

∑
i=1

ξi +C2

r+s

∑
i=r+1

ξi, (23)

s.t. (w ⋅ ∑
j∈I(i)

vi
jΦ(x j))+b ≥ 1−ξi, i = 1, ⋅ ⋅ ⋅ , p, (24)

(w ⋅Φ(xi))+b ≤−1+ξi, i = r+1, ⋅ ⋅ ⋅ ,r+ s, (25)
ξi ≥ 0, i = 1, ⋅ ⋅ ⋅ , p,r+1, ⋅ ⋅ ⋅ ,r+ s, (26)
vi

j ≥ 0, j ∈ I(i), i = 1, ⋅ ⋅ ⋅ , p, (27)

∑
j∈I(i)

vi
j = 1, i = 1, ⋅ ⋅ ⋅ , p. (28)

For solving the above problem, we arrive the following algorithm.

Algorithm 2. (Multi-instance Support Vector Classification)

(1) Given a training set (3);
(2) Select proper kernel function K(x,x′) and panelty parameter C1,C2 > 0;

(3) Select initial values {vi
j} , and denote it as vi

j, e.g select vi
j =

1
∣I(i)∣, j ∈ I(i), j =

1, ⋅ ⋅ ⋅ , p, where ∣I(i)∣ stands for the number of the elements in the set I(i), i.e. the
number of the instances in the positive bag Xi;
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(4) Compute ᾱ from {vi
j}: Solve the convex quadratic programming

min
α

1
2

p

∑
i=1

p

∑
j=1

yiy jαiα jK(xi,x j)+
1
2

p

∑
i=1

r+s

∑
j=r+1

yiy jαiα j( ∑
k∈I( j)

v j
kK(xi,xk))

+
1
2

r+s

∑
i=r+1

p

∑
j=1

yiy jαiα j( ∑
k∈I(i)

vi
kK(xk,x j))

+
1
2

r+s

∑
i=r+1

r+s

∑
j=r+1

yiy jαiα j( ∑
k∈I(i)

vi
k ∑

l∈I( j)
v j

l K(xk,xl))

−
p

∑
i=1

αi −
r+s

∑
i=r+1

αi, (29)

s.t.
p

∑
i=1

yiαi +
r+s

∑
i=r+1

yiαi = 0, (30)

0 ≤ αi ≤C1, i = 1, ⋅ ⋅ ⋅ , p, (31)
0 ≤ αi ≤C2, i = r+1, ⋅ ⋅ ⋅ ,r+ s, (32)

and get the solution ᾱ = (ᾱ1, ⋅ ⋅ ⋅ , ᾱp, ᾱr+1, ⋅ ⋅ ⋅ , ᾱr+s)
T , For all i, j, set {ṽi

j}= {vi
j};

(5) Compute {v̄i
j} from ᾱ, ṽ: Solve the linear programming obtained from problem

(23)–(28) with substituting w by

w̄ =
p

∑
i=1

ᾱiyiΦ(xi)+
r+s

∑
i=r+1

ᾱiyi( ∑
j∈I(i)

ṽi
jΦ(x j)), (33)

and get its solution {v̄i
j} with respect to {vi

j};
(6) Compare {v̄i

j} to {ṽi
j}. When their difference is small enough , construct the deci-

sion function
f (x) = sgn(g(x)), (34)

where g(x) is obtained by

g(x) =
p

∑
i=1

ᾱiyiK(xi,x)+
r+s

∑
i=r+1

ᾱiyi( ∑
j∈I(i)

vi
jK(x j,x))+ b̄. (35)

and either

b̄ = y j −
p

∑
i=1

yiᾱiK(xi,x j)−
r+s

∑
i=r+1

yiᾱi( ∑
l∈I(i)

vi
lK(xl ,x j)); (36)

or

b̄ = y j −
p

∑
i=1

yiᾱi( ∑
k∈I( j)

v j
kK(xi,xk))−

r+s

∑
i=r+1

yiᾱi( ∑
l∈I(i)

vi
l ∑

k∈I( j)
v j

kK(xl ,xk)). (37)

Here ᾱ and {vi
j} are the latest corresponding values; Otherwise set {vi

j}= {v̄i
j}, go

to step (4).
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3 Numerical Experiment
To estimate the capabilities of our proposed methods, we report the results on four

public benchmark datasets, one from the UCI machine learning repository [11], and three
from [8]. The datasets from [8] are used to evaluate our linear multi-instance support
vector classification, where two datasets, “Elephant" and “Tiger", are from an image an-
notation task in which the goal is to determine whether or not a given animal is present
in an image; the rest one dataset, “TST1", is from the OHSUMED data and the task is to
learn binary concepts associated with the Medical Subject Headings of MEDLINE doc-
uments. The “Musk1" dataset from the UCI machine learning repository [11] is used
to test our nonlinear multi-instance support vector classification, which involves bags of
molecules and their activity levels and is commonly used in multi-instance classification.
Detailed information about these datasets can be found in [10].

We use ‘linprog’ function in MATLAB to solve the linear programming in the two
algorithms. For the quadratic programming, we use SVMlight[12] and ‘quadprog’ func-
tion with MATLAB in Algorithm 1 and Algorithm 2 respectively. The testing accuracies
for our method are calculated using standard 10-fold cross validation method[13]. The
parameters, the regularization parameter C and the RBF kernel parameter γ , are selected
from the set {2i∣i = −8, ⋅ ⋅ ⋅ ,8} by 10-fold cross validation on the tuning set comprising
of random 10% of the training data. Once the parameters are selected, the tuning set
was returned to the training set to learn the final classifier. In Algorithm 1, the regular-

ization parameters are set up C1 = C2 = C. In Algorithm 2, C1 =
nN−instance

nP−bag +nN−instance
C

and C2 =
nP−bag

nP−bag +nN−instance
C, where nN−instance is the number of instances in all neg-

ative bags, nP−bag is the number of all positive bags. Our algorithms are stopped if the
difference between the convex combination coefficients v is less than 10(− 4) or if the
iterations k > 80.

We compare our results with MICA[10], SVM1[10], mi-SVM[8],MI-SVM[8],R-SVM
[9] and EM-DD[5]. Our methods are denoted as SVM-CC since they are based on convex
combination. The results of 10-fold cross validation accuracy are listed in Table 1. Cor-
rectness results for mi-SVM, MI-SVM and EM-DD are taken from [8] and for R-SVM
from [9]. We see from Table 1 that our method has the best correctness on the ‘Musk1’
dataset. Although our method does not achieve the best accuracy results in the rest three
datasets, they are comparable second bests in Table 1.

Table 1: Results for four models
Dataset MICA mi-SVM MI-SVM R-SVM EM-DD SVM-CC

Elephant 80.5% 82.2% 81.4% 84.3% 78.3% 81.5%
Tiger 82.6% 78.4% 84% 83.7% 72.1% 83%
TST1 94.5% 93.6% 93.9% 95.1% 85.8% 95%
Musk1 84.4% 87.4% 77.9% 85.8% 84.8% 88.9%
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4 Conclusion
In this paper, we develop a novel approach to multi-instance learning problem based

on convex combination for the instances in each positive bag and establish two algo-
rithms for linear multi-instance SVC and nonlinear multi-instance SVC respectively. The
key point is that the multi-instance learning is formulated, as an extension of the standard
C-support vector classification, as a nonlinear optimization problem with continuous vari-
ables. This problem, in principle, is easy to be solved since it does not involved in integer
variables like MI-SVM. It is interesting to solve this problem by a more reasonable and
efficient way.
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