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Abstract Universum-support vector machine (U-SVM) is an elegant method for 2-class classifi-
cation problem. It is systematically studied in this paper, including the existence and uniqueness of
the primal problem as well as the relation between the solutions of primal problem and dual prob-
lem. We find that U-SVM uses 3-class classification approach to solve the 2-class classification
problem. So we have compared K-support vector classification regression (K-SVCR) and support
vector ordinal regression machine (SVORM). Our conclusion is that, selecting their parameters
properly, these three models get the same decision function essentially.

Keywords U-support vector machine; K-support vector classification regression; Support vector
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1 Introduction
In this paper, we study a pattern classification algorithm which has recently been pro-

posed in [1], called as the universum-support vector machine (U-SVM). So far, U-SVM
has been successfully applied in many fields, such as handwriting digits recognition[1],
gene translation initiation site identification[2] and so on. However, it is imperfect for
the optimization theory of U-SVM. In this paper, we study its primal problem, dual prob-
lem and their relationship. In addition, for U-SVM, we delve into the relationship with
both the K-support vector classification regression (K-SVCR)[6] and the support vector
ordinal regression machine (SVORM)[7].

The rest of the paper is organized as follows. In Section 2, for U-SVM the primal
problem, dual problem and their relationship are studied in detail . Of particular im-
portance, we find the relationship among U-SVM, K-SVCR and SVORM, in Section 3.
Section 4 contains some conclusion remarks.

2 U-SVM and its optimization theory
Suppose that the training set T̃ consists of two parts:

T̃ = Tu ∪Uu, (1)
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where

Tu = {(x1,y1), ⋅ ⋅ ⋅ ,(xl ,yl)} ∈ (X ×Y )l , (2)
Uu = {x∗1, ⋅ ⋅ ⋅ ,x∗u} ∈ Rn, (3)

with xi ∈ X ⊆ Rn,y ∈ Y = {−1,1}, i = 1, ⋅ ⋅ ⋅ , l, and x∗j ∈ Rn, j = 1, ⋅ ⋅ ⋅ ,u. The task is to
find a decision function

f (x) = sgn((w̃ ⋅ x)+ b̃). (4)

2.1 The primal problem
The decision problem (4) is determined by (w̃, b̃), a part of the solution (w̃, b̃, ξ̃ , ψ̃∗)

to the primal problem

min
w,b,ξ ,ψ(∗)

1
2
∥w∥2

2 +Ct

l

∑
i=1

ξi +Cu

u

∑
s=1

(ψs +ψ∗
s ), (5)

s.t. yi((w ⋅ xi)+b)≥ 1−ξi,ξi ≥ 0, i = 1, ⋅ ⋅ ⋅ , l, (6)
−ε −ψ∗

s ≤ (w ⋅ x∗s )+b ≤ ε +ψs,s = 1, ⋅ ⋅ ⋅ ,u, (7)
ψs,ψ∗

s ≥ 0,s = 1, ⋅ ⋅ ⋅ ,u, (8)

where ξ = (ξ1, ⋅ ⋅ ⋅ ,ξl)
T ,ψ(∗) = (ψ1,ψ∗

1 , ⋅ ⋅ ⋅ ,ψu,ψ∗
u )

T , and Ct ,Cu ∈ [0,+∞),ε ∈ [0,+∞)
are the parameters. For the primal problem (5)–(8), we call (w̃, b̃) above as the solution
with respect to (w,b). Its existence and uniqueness are described below.
Theorem 1 For the primal problem (5)–(8), its solution (w̃, b̃) with respect to (w,b)
exists.
Theorem 2 For the primal problem (5)–(8), its solution w̃ with respect to w is unique ,
that is, if both (w′,b′,ξ ′

i ,ψ
′(∗)
i ) and (w′′,b′′,ξ ′′

i ,ψ
′′(∗)
i ) are solutions of the primal prob-

lem (5)–(8), then w′′ = w′.
Theorem 3 For the primal problem (5)–(8), its solutions with respect to b consist of a
closed interval [b̃dn, b̃up].

2.2 The dual problem to the primal problem and their relationship
First, we give the dual problem of the primal problem (5)–(8).

Theorem 4 The optimization problem

max
α,µ,ν

−1
2

l

∑
i, j=l

αiα jyiy j(xi ⋅ x j)−
1
2

u

∑
s,t=1

(µs −νs)(µt −νt)(x∗s ⋅ x∗t )

−
l

∑
i=1

u

∑
s=1

αiyi(µs −νs)(xi ⋅ x∗s )+
l

∑
i=1

αi − ε
u

∑
s=1

(µs +νs) (9)

s.t.
l

∑
i=1

yiαi +
u

∑
s=1

(µs −νs) = 0, (10)

0 ≤ αi ≤Ct , i = 1, ⋅ ⋅ ⋅ , l, (11)
0 ≤ µs,νs ≤Cu, s = 1, ⋅ ⋅ ⋅ ,u . (12)
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is the dual problem of the primal problem (5)–(8).
In order to get the solution to primal problem, we need the following theorem.

Theorem 5 Suppose that α̃ = (α̃1, ⋅ ⋅ ⋅ , α̃l)
T, µ̃ = (µ̃1, ⋅ ⋅ ⋅ , µ̃u)

T, ν̃ = (ν̃1, ⋅ ⋅ ⋅ , ν̃u)
T is

any solution of the dual problem (9)–(12). If there exists α̃ j ∈ (0,Ct),or µ̃m ∈ (0,Cu), or
ν̃t ∈ (0,Cu), then for the primal problem (5)–(8), its unique solution (w̃, b̃) with respect
to (w,b) can be obtained by the following way:

w̃ =
l

∑
i=1

α̃iyixi +
u

∑
s=1

(µ̃s − ν̃s)x∗s ; (13)

and

b̃ =

⎧
⎨
⎩

y j −
l

∑
i=1

α̃iyi(xi ⋅ x j)−
u

∑
s=1

(µ̃s − ν̃s)(x∗s ⋅ x j), if α̃ j ∈ (0,Ct),

ε −∑l
i=1 α̃iyi(xi ⋅ x∗m)−∑u

s=1(µ̃s − ν̃s)(x∗s ⋅ x∗m), if µ̃m ∈ (0,Cu),

−ε −∑l
i=1 α̃iyi(xi ⋅ x∗t )−∑u

s=1(µ̃s − ν̃s)(x∗s ⋅ x∗t ), if ν̃t ∈ (0,Cu).

(14)

3 The relationship with both K-SVCR and SVORM
Essentially speaking, U-SVM considers the U-set given by (3) as an extra class and

deals with the 2-class problem by solving a 3-class problem. This leads to study their
relationship. Here both K-SVCR and SVORM are addressed.

It has been pointed out in almost applications, only the case corresponding to Theorem
5 appears. So from now on, we assume that, for U-SVM, K-SVCR and SVORM, their
solution with respect to (w,b) is unique.

3.1 The relationship between U-SVM and K-SVCR
Let us introduce K-SVCR[6] first, which was proposed to solve 3-class classification

problem. Given a training set

T̄ = {(xi,yi)}l1+l2+l3
i=1 ⊆ Rn ×Y , (15)

where xi ∈ Rn, yi ∈ Y = {−1,0,1} with

yi =

⎧
⎨
⎩

−1, i = 1, ⋅ ⋅ ⋅ , l1;
0, i = l1 +1, ⋅ ⋅ ⋅ , l1 + l2;
1, i = l1 + l2 +1, ⋅ ⋅ ⋅ , l1 + l2 + l3.

(16)

The task is to find a decision function

f (x) =

⎧
⎨
⎩

+1, if (w̄ ⋅ x)+ b̄ ≥ δ ;
−1, if (w̄ ⋅ x)+ b̄ ≤−δ ;
0, Others,
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where, (w̄, b̄) is a solution with respect to (w,b) of the following problem with the param-
eters D1,D2 ∈ [0,+∞),δ ∈ [0,1)

min
w,b,ξ ,ψ(∗)

1
2
∥w∥2 +D1

l1+l2

∑
i=1

ξi +D2

l3

∑
i=1

(ψi +ψ∗
i ), (17)

s.t. yi((w ⋅ xi))+b)≥ 1−ξi,ξi ≥ 0, i = 1, ⋅ ⋅ ⋅ , l1 + l2, (18)
−δ −ψ∗

i ≤ (w ⋅ x∗i ))+b ≤ δ +ψi, i = 1, ⋅ ⋅ ⋅ , l3, (19)
ψi,ψ∗

i ≥ 0, i = 1, ⋅ ⋅ ⋅ , l3, (20)

where ξ = (ξ1, ⋅ ⋅ ⋅ ,ξl1 ,ξl1+1, ⋅ ⋅ ⋅ ,ξl1+l2)
T ,ψ(∗) = (ψ(∗)

1 , ⋅ ⋅ ⋅ ,ψ(∗)
l3 )T .

Now we consider to use the above K-SVCR to solve the 2-class classification problem
with the training set T̃ given by (2) and (3). First, transfer the training set T̃ into the
formulation T̄ given by (15) as following:

T̄ = {(xi,yi)
l1+l2+l3
i=1 }, (21)

where

{(xi,yi)
l1
i=1}= {(xi,yi)∣(xi,yi) ∈ Tu,yi =−1}, (22)

{(xi,yi)
l1+l2

i=l1+1}= {(xi,0)∣xi ∈Uu}, (23)

{(xi,yi)
l1+l2+l3
i=l1+l2+1}= {(xi,yi)∣(xi,yi) ∈ Tu,yi = 1}. (24)

Second, establish and solve the optimization problem (17)–(20) with the training set
(21)–(24), and obtain its solution (w̄, b̄) with respect to (w,b).

At last, construct the decision function

f (x) =
{

+1 when (w̄ ⋅ x)+ b̄ ≥ 0 ;
−1 when (w̄ ⋅ x)+ b̄ < 0 , (25)

Now we are in a position to show the relationship between the primal problem of
U-SVM and the primal problem of K-SVCR:
Theorem 6 Suppose that, for the primal problem (5)–(8) and the primal problem (17)–
(20) with the training set (21)–(24), (w̃, b̃) and (w̄, b̄) are respectively their solution with
respect ro (w,b). If the parameters satisfy

Ct = D1,Cu = D2,ε = δ ,

then we have
w̃ = w̄, b̃ = b̄.

Therefore, the same decision function should be generated by U-SVM and the modified
K-SVCR.
Proof. If Ct = D1,Cu = D2,ε = δ , we can see that the primal problem (5)–(8) of U-
SVM and the primal problem (17)–(20) of K-SVCR have the same form, so when the two
models are trained for the training set (1), the same solutions are got, that is, w̃= w̄, b̃= b̄.
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The decision function of U-SVM is :

(w̃ ⋅ x)+ b̃ = 0. (26)

The decision function of K-SVCR is

(w̄ ⋅ x)+ b̄ = 0. (27)

As can be seen, the both equations (26) and (27) represent the same hyperplane. □

3.2 The relationship between U-SVM and SVORM
Now we introduce SVORM solving a 3-class classification problem. Given a training

set
T̂ = {x1

1, ⋅ ⋅ ⋅ ,x1
l1 ,x2

1, ⋅ ⋅ ⋅ ,x2
l2 ,x3

1, ⋅ ⋅ ⋅ ,x3
l3}, (28)

where x j
i ∈ Rn be the set of training examples, j = 1,2,3 denotes the class number, and

l j is the index within each class. The geometric interpretation of this approach is to look
for 2 parallel hyperplanes

(ŵ ⋅ x) = b̂s,s = 1,2,

where ŵ ∈ Rn, b̂1 ≤ b̂2, b̂0 =−∞, and b̂3 =+∞. So the space Rn is divided into 3 ranked
regions by the decision rule

b̂s−1 < (ŵ ⋅ x)< b̂s,s = 1,2,3.

The decision function is then given by

f (x) = min
s∈{1,2}

{s : (ŵ ⋅ x)− b̂s < 0}, (29)

where b̂0 = −∞, b̂3 = +∞ and (ŵ, b̂1, b̂2) is a solution with respect to (w,b1,b2) of the
following primal problem with the parameters C13 and C2

min
w,b1,b2,ξ 1,ξ (∗)2,ξ ∗3

1
2
∥w∥2 +C13(

l1

∑
i=1

ξ 1
i +

l3

∑
i=1

ξ 3
i )+C2

l2

∑
i=1

(ξ 2
i +ξ ∗2

i ) (30)

s.t. ((w ⋅ x1
i )−b1)≤−1+ξ 1

i , i = 1, ⋅ ⋅ ⋅ , l1, (31)
((w ⋅ x2

i )−b1)≥ 1−ξ ∗2
i , i = 1, ⋅ ⋅ ⋅ , l2, (32)

((w ⋅ x2
i )−b2)≤−1+ξ 2

i , i = 1, ⋅ ⋅ ⋅ , l2, (33)
((w ⋅ x3

i )−b2)≥ 1−ξ ∗3
i , i = 1, ⋅ ⋅ ⋅ , l3, (34)

where ξ 1 = (ξ 1
1 , ⋅ ⋅ ⋅ ,ξ 1

l1)
T ,ξ (∗)2 = (ξ (∗)2

1 , ⋅ ⋅ ⋅ ,ξ (∗)2
l2 )T ,ξ 3 = (ξ ∗3

1 , ⋅ ⋅ ⋅ ,ξ ∗3
l3 )T .

Now we consider to use the above SVORM to solve the 2-class classification problem
with the training set T̂ given by (2) and (3). First, transfer the training set T̃ into the
formulation T̂ given by (28) as following

T̂ = {(x j
i )

j=1,2,3
i=1,⋅⋅⋅ ,l1+l2+l3

}, (35)
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where

{x1
1, ⋅ ⋅ ⋅ ,x1

l1}= {xi∣(xi,yi) ∈ Tu,yi =−1}, (36)

{x2
1, ⋅ ⋅ ⋅ ,x2

l2}= {xi∣xi ∈Uu}, (37)

{x3
1, ⋅ ⋅ ⋅ ,x3

l3}= {xi∣(xi,yi) ∈ Tu,yi = 1}. (38)

Second, establish and solve the optimization problem (30)–(34) with the training set
(35)–(38), and obtain its solution (ŵ, b̂1, b̂2) with respect to (w,b1,b2).

At last, construct the decision function

f (x) =

{
+1, when (ŵ ⋅ x)− b̂1+b̂2

2 ≥ 0 ;
−1, when (ŵ ⋅ x)− b̂1+b̂2

2 < 0 ,
(39)

where, (ŵ, b̂1, b̂2) is the solution of (30)–(34).
Next, let us show the relationship between the primal problem of U-SVM and the

primal problem of SVORM
Theorem 7 Suppose that, for the primal problem(5)–(8) and the primal problem (30)–
(34) with the training set (35)–(38), (w̃, b̃) and (ŵ, b̂1, b̂2) are respectively their solution
with respect to (w,b) and (w,b1,b2). If the parameters satify

Ct =C13,Cu =C2,ε =
b̂2 − b̂1 −2
b̂2 − b̂1 +2

,

then we have

w̃ =
ŵ
2

1−ε
, b̃ =

− b̂1+b̂2
2

2
1−ε

.

Therefore, the same decision function should be generated by U-SVM and the modified
SVORM.
Proof. When 3-class classification SVORM is trained for the training set (35), the fol-
lowing both hyperplanes are no longer required

(w ⋅ x) = b1, (w ⋅ x) = b2,

but the hyperplane is located in the middle of above hyperplanes, that is,

(w ⋅ x)− b1 +b2

2
= 0. (40)

Then, the primal problem (30)–(34) of SVORM can be represented as

min
w,b1,b2

1
2
∥w∥2 +C13(

l1

∑
i=1

ξ 1
i +

l3

∑
i=1

ξ 3
i )+C2

l2

∑
i=1

(ξ 2
i +ξ ∗2

i ), (41)

s.t. (w ⋅ x1
i )−

b1 +b2

2
≤−(

b2 −b1

2
+1)+ξ 1

i , i = 1, ⋅ ⋅ ⋅ , l1, (42)

(w ⋅ x2
i )−

b1 +b2

2
≥−(

b2 −b1

2
−1)−ξ ∗2

i , i = 1, ⋅ ⋅ ⋅ , l2, (43)

(w ⋅ x2
i )−

b1 +b2

2
≤ (

b2 −b1

2
−1)+ξ 2

i , i = 1, ⋅ ⋅ ⋅ , l2, (44)

(w ⋅ x3
i )−

b1 +b2

2
≥ (

b2 −b1

2
+1)−ξ ∗3

i , i = 1, ⋅ ⋅ ⋅ , l3. (45)

478 The 8th International Symposium on Operations Research and Its Applications



Let h = − b1+b2
2 ,γ = b2 − b1. And given the proper normal direction ŵ, the both margin

hyperplanes can be represented as

(ŵ ⋅ x)+ b̂ =−(
γ
2
+1)+ ξ̂ 1

i ,

(ŵ ⋅ x)+ b̂ = (
γ
2
+1)− ξ̂i

∗3
.

For a fixed γ , let

w =
ŵ

1+ γ
2
,b =

b̂
1+ γ

2
,ξ =

ξ̂
1+ γ

2
.

Then, the optimization problem (41)–(45) is equivalent to the following problem

min
w,h,ξ

1
2
∥w∥2 +C13(

l1

∑
i=1

ξ 1
i +

l3

∑
i=1

ξ 3
i )+C2

l2

∑
i=1

(ξ 2
i +ξ ∗2

i ), (46)

s.t. (w ⋅ x1
i )+h ≤−1+ξ 1

i , i = 1, ⋅ ⋅ ⋅ , l1, (47)

−γ −2
γ +2

−ξ ∗2
i ≤ (w ⋅ x2

i )+h ≤ γ −2
γ +2

+ξ 2
i , i = 1, ⋅ ⋅ ⋅ , l2, (48)

(w ⋅ x3
i )+h ≥ 1−ξ ∗3

i , i = 1, ⋅ ⋅ ⋅ , l3. (49)

We can see that if Ct =C13,Cu =C2,ε = b̂2−b̂1−2
b̂2−b̂1+2

, then the problem (46)–(49)is the same

to the primal problem for U-SVM, and its solution with respect to (w,b) is w̃ = ŵ
2

1−ε
, b̃ =

− b̂1+b̂2
2

2
1−ε

.

Furthermore, the decision function of U-SVM can be represented as

(
ŵ
2

1−ε
⋅ x)−

b̂1+b̂2
2
2

1−ε
= 0, (50)

and the decision function of SVORM is

(ŵ ⋅ x)− b̂1 + b̂2

2
= 0. (51)

we can see that the both equations (50) and (51) represent the same separating hyperplane.
□

4 Discussion
In this paper we studies the theory of U-SVM, including the existence and uniqueness

of the primal problem as well as the relation between the solutions of primal problem and
dual problem. Of particular importance, we find that U-SVM is essentially use 3-class
classifications to solve the 2-class classification problems, so we have U-SVM compared
with K-SVCR and SVORM. Thus, we conclude that all of these three models get the same
decision function when their parameters satisfy some conditions.

For simplicity, for U-SVM as well as K-SVCR and SVORM, only their linear for-
mulations are addressed in this paper. However, it should be pointed out that for their
nonlinear formulation with kernel, the same conclusions can be obtained without any
essential difficulties.
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