
An Implementation of a 5-term GFSR Random
Number Generator for Parallel Computations

Hajime Miyazawa∗ Masanori Fushimi†

Faculty of Information Sciences and Engineering, Nanzan University
27 Seirei-cho, Seto, Aichi 489-0863, Japan

Abstract This paper describes an implementation of a 5-term GFSR (Generalized Feedback Shift
Register) random number generator that generates mutually uncorrelated random number sequences
on computing nodes of networked personal computers (PCs). As GFSR generators have extremely
long periods and their autocorrelation functions are known, it is possible for the generator on each
computing node to generate a subsequence uncorrelated with each other if initial terms of the gener-
ator are properly set up on each computing node. Some preliminary results of simple Monte Carlo
simulations are also shown.

Keywords Random Number Generator; 5-term GFSR; Parallel Computations

1 Introduction
Recent advance in multi-core CPUs makes it possible to use a commodity PC for

parallel computations. Even a low-cost PC can have a quad-core CPU to have four threads
of execution. We can easily construct large-scale parallel computing environment by
connecting a few of such PCs via Ethernet LAN.

Such parallel computing environment is suitable especially for large-scale Monte
Carlo simulations because they need lots of computational time. Assigning replications
in a simulation onto each computing node and collecting the computational results of the
nodes enables obtaining the final answer more quickly as the number of computing node
becomes larger.

One of the problems in running large-scale Monte Carlo simulations on parallel com-
puting environment is to guarantee that the pseudorandom number generator on each
computing node generates a sequence of random numbers uncorrelated with each other.
A solution to this problem is to choose one generator whose autocorrelation function is
known and to use mutually uncorrelated subsequences on the computing nodes[3].

This paper describes an implementation of a 5-term GFSR random number generator
that generates mutually uncorrelated random number sequences on computing nodes of
networked PCs. Because the autocorrelation functions of GFSR generators are known,

∗miyazawa@nanzan-u.ac.jp
†fushimi@nanzan-u.ac.jp

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 448–452



we can verify there are no correlations among the sequences to be generated by the gen-
erators on computing nodes. Extremely long periods of the generators guarantee that they
generate long sequences enough for practical use.

The rest of this paper is structured as follows. Section 2 describes the characteristics
of GFSR generators. We show how the generators are used for parallel computations in
Section 3. Our implementation of the pseudorandom number generator used for parallel
computations is described in Section 4. Section 5 gives some results of computational
experiments using our library. Section 6 concludes the paper.

2 Characteristics of GFSR Generators
A sequence of integers {Xt} generated by a GFSR generator is defined recursively as

follows:
Xt+p = Xt+q1 ⊕Xt+q2 ⊕⋅⋅ ⋅⊕Xt+qℓ ⊕Xt (1)

Here, the symbol ⊕ means the bit-wise addition modulo 2, and the characteristic polyno-
mial of the recursion (1)

f (z) = zp − zq1 − zq2 −⋅⋅ ⋅− zqℓ −1 (2)

is a primitive polynomial of degree p over GF(2). In order to generate a sequence of
pseudorandom numbers, we must give initial values X1,X2, ⋅ ⋅ ⋅ ,Xp. The appendix of [1]
describes an initialization method based on the method proposed by Fushimi[2]. This
method guarantees a good autocorrelation property as well as a good multidimensional
property. The autocorrelation function of the sequence generated with this initialization
method is given below as follows[2].

Let {Xt} be the b-bit integer sequence generated by the recursion (1) and {xt} =
{Xt/2b} be the normalized sequence. The periods of these sequences are T = 2p−1. Let x
denote the average of xt ’s over the entire period, which is equal to 0.5(1−2−b)/(1−2−p)
and very close to 0.5 if p is large. Let R(s) be the autocorrelation function of the sequence
{xt} defined by the following:

R(s) =
1
T

T

∑
t=1

(xt − x)(xt+s − x) (3)

It is shown in [2] that

R(s) =− 1
4T

(1−2−b)2 (1 ≤ ∣s∣ ≤ s0), (4)

which is almost equal to zero because T is very large. Here, s0 = (T + 1)/b if b is a
power of 2, e.g. b = 32, and in general s0 = (T +1)/b′, where b′ is the smallest power of
2 which is not less than b. Thus s0 is also very large if, for example, p = 521 and b = 32.

3 Using GFSR Generators for Parallel Computation
In order to ensure the independence of generated sequences, we use one and the same

generator for a simulation, and use mutually uncorrelated subsequences on computing
nodes. More precisely, we choose an integer τ which is less than or equal to s0/m, where

An Implementation of a 5-term GFSR Random Number Generator 449



m is the number of computing nodes, and use the subsequences {Xt : (k−1)τ+1≤ t ≤ kτ}
on the k-th computing node (k = 1,2, ⋅ ⋅ ⋅ ,m). Then we must compute “initial values” for
computing nodes no.2 through no.m from the initial values XXX (1)

0 = {X1,X2, ⋅ ⋅ ⋅ ,Xp} for

the computing node no.1. To compute these initial values quickly when XXX (1)
0 is given, we

make preparations for initialization before XXX (1)
0 is specified.

It is known that the sequence {Xt} which is generated by the recursion (1) satisfies

Xt = Xt−e(p−q1)⊕Xt−e(p−q2)⊕⋅⋅ ⋅⊕Xt−ep (5)

where e is any integral power of 2[3]. Using the recursion (5), we can compute Xt from
XXX (1)

0 rather quickly even for a very large t. Let g(u) denote the greatest integral power
of 2 which does not exceed u. Let e = g(t/p) in (5), then Xt can be computed from Xt ′ ’s
on the right-hand side with relatively small indices t ′. We apply the same technique to
those Xt ′ ’s, and repeat this process until Xt is expressed as a linear combination (in the
sense of ⊕) of the elements of XXX (1)

0 . This procedure can easily be implemented if we
use a programming language which provides a function of recursive calls, e.g. C. The
computational time required is, however, rather long when t is very large and the number
of terms in the recursion (5) is not very small. So we modify the procedure for very large
t to speed up the initialization process, which will be described in the next section for the
recursion with 5 terms.

4 Implementation of a GFSR Generator for Parallel Com-
putation

We implemented a 5-term GFSR generator shown in Section 3 as a library used in
parallel computation environment. The implemented generator is based on the recursion

Xt+521 = Xt+86 ⊕Xt+197 ⊕Xt+447 ⊕Xt (6)

First, we use the recursive procedure described above to express X8193 as a linear combi-
nation of the elements of XXX (1)

0 = {X1,X2, ⋅ ⋅ ⋅ ,X521}. Using this expression, it is easy to

express X8194,X8195, ⋅ ⋅ ⋅ ,X8713 as linear combinations of the elements of XXX (1)
0 . Thus we

obtain the matrix A which expresses the transformation

YYY = AXXX (1)
0

where XXX (1)
0 and YYY = {X8193,X8194, ⋅ ⋅ ⋅ ,X8713} are understood to denote column vectors.

Once the matrix A is determined, repetitive squarings of the matrix generate ones to com-
pute terms much more distant from the initial terms. Finally we obtain the matrix with
which we can compute Xn for n = 2500. The final matrix is incorporated in the library as a
constant to compute sets of initial values for all the computing nodes from the initial val-
ues XXX (1)

0 for the first node. On the k-th computing node the generator generates a sequence
of pseudorandom numbers beginning from the term 2500 apart from that on the (k− 1)-
th node. As the period of the entire sequence is 2521 − 1, more than 220 ≈ 1,000,000
computing nodes generate mutually uncorrelated random number sequences.

As a parallel communication library, we adopt the OpenMPI library, which is a typical
implementation of Message-Passing Interface (MPI).

450 The 8th International Symposium on Operations Research and Its Applications



5 Computational Experiments
Our experimental environment consists of four PCs each of which has a 3GHz AMD

Phenom II X4 940 processor and 6GBytes of memory running Debian Linux with kernel
version 2.6.24-amd64. They are connected via 1000Base-T Ethernet LAN. Because a
Phenom II processor has four cores of computation, we can use up to 16 cores in our
experiments.

5.1 Computing the Value of π
We ran a simple Monte Carlo simulation to compute the value of π . We compared the

three generators each of which generates 240 points in the unit square (0.0, 0.0) - (1.0, 1.0)
on all computing nodes. Tables 1 and 2 show the results of the simulations on a single
computational core and on 16 computational cores respectively. In the case of Table 2,
the total number of sample points is 16×240 = 244.

The three compared generators are our GFSR generator (global GFSR), the same
GFSR but with a different random number seed on each computing node (local GFSR) and
the random number generator in the C library functions(random(3)1), whose random
number seed is different on each computing node.

Table 1: The values of π obtained in the simulations (1 core)
Generator The value of π Error ×1010 Simulation time (sec.)
Global GFSR 3.1415930641 4105 21486
Local GFSR 3.1415930641 4105 21524
random(3) 3.1415932465 5925 39531
The true value of π 3.1415926536

Table 2: The values of π obtained in the simulations (16 cores)
Generator The value of π Error ×1010 Simulation time (sec.)
Global GFSR 3.1415927463 927 21949
Local GFSR 3.1415930322 3786 25500
random(3) 3.1415921943 4593 40483
The true value of π 3.1415926536

We observe the following from Tables 1 and 2.

• There are no significant differences in simulation times for 1 core and 16 cores.
• There are no significant differences in simulation times for global GFSR and local

GFSR, but the simulation time for random(3) is about twice the times for GFSRs.
• The error contained in the computed value is defined to be the absolute value of

the difference between the computed value and the true value of π . Table 1 shows
there is no significant differences among the errors for the three generators, but
some differences are observed in Table 2: the error for the global GFSR is rather

1The random(3) function uses a non-linear additive feedback random number generator employing a
default table of size 31 long integers. The period of the generator is approximately 16× (231 −1)[4].

An Implementation of a 5-term GFSR Random Number Generator 451



Table 3: The values of (1/2)5 V5 obtained in the simulations (16 cores)
Generator The value of (1/2)5 V5 Error ×1010 D16 p-value
Global GFSR 0.1644932381 1686 0.340 0.037
Local GFSR 0.1644935708 1641 0.275 0.146
random(3) 0.1644934765 698 0.247 0.238

The true value of
(

π2/60
)

0.1644934067

small compared with the other two. Comparing Table 1 with Table 2, we notice
that the errors for local GFSR and random(3) do not differ very much between
the two tables, but the error for global GFSR in Table 2 is about a quarter of its
counterpart in Table 1. We remember the general theory in Monte Carlo simulation
that the expected error contained in the computed value obtained from i.i.d. samples
is inversely proportional to the square root of the sample size. The sample size in
Table 2 is 16 times the sample size in Table 1, (1/

√
16) = (1/4), and this ratio is

consistent with the general theory. On the other hand, the errors for local GFSR
and random(3) in Tables 1 and 2 are rather inconsistent with the general theory.

5.2 Multidimensional Behavior
We also ran another Monte Carlo simulation to compute the volume of the five-

dimensional unit hypersphere V5. We compared the three generators each of which gen-
erates 240 points in the five-dimensional unit hypercube on all computing nodes. Table
3 shows the result of the simulation on 16 computational cores, which actually compute
(1/2)5 V5 =

(
π2/60

)
. In this case, there is no significant difference among the errors for

the three generators. We have also checked the distribution of the approximate values ob-
tained on the 16 cores, and computed two-sided Kolmogorov-Smirnov statistics D16 and
the corresponding p-values. The null hypothesis is “the 16 values are random samples
from a normal distribution,” and the alternative hypothesis is two-sided.

6 Conclusion
We have shown a method to use GFSR pseudorandom numbers for parallel computa-

tions. A practical implementation of the method which generates mutually uncorrelated
random sequences on each node is also available. Some preliminary computational ex-
periments using the library are presented.

References
[1] Japanese Industrial Standards Committee. JIS Z9031:2001 Procedure for Random Number

Genration and Randomization. Japanese Industrial Standards Association, Tokyo, 2001. in
Japanese.

[2] Masanori Fushimi. Random Numbers. University of Toyo Press, Tokyo, 1989. in Japanese.
[3] Masanori Fushimi. Random numbers for parallel computations. In Shigeyoshi Ogawa, editor,

RIMS Reports of The 7th Workshop on Stochastic Numerics, RIMS Kôkyûroku No.1462,
pages 57–62. Research Institute for Mathematical Sciences, Kyoto University, January 2006.

[4] GNU. Linux Programmer’s Manual random(3), August 2000.

452 The 8th International Symposium on Operations Research and Its Applications




