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Abstract In this paper, we consider optimal stopping problem for double exponential jump dif-
fusion processes. Moreover, we derive the value function of the option to postpone and its optimal
boundary. Also some numerical results are presented to demonstrate analytical sensitives of the
value function with respect to parameters.

Keywords Double exponential Jump diffusion process; optimal stopping problem

1 Introduction
In option pricing, Jump diffusion model was first introduced by Merton [5]. Mordecki

[6] gave the closed form solution under jump diffusion process from the point of view of
an optimal stopping problem. Ohnishi [7] discussed an optimal stopping problem with
random jumps and derived the value function and the optimal stopping boundary. Kou
and Wang [2] have studied the first hitting time for a double exponential jump diffusion
process. Moreover, Kou and Wang [3] gave the closed form for the value function of
perpetual American put options without dividend and so on.

In this paper, we deal with the option to postpone for double exponential jump dif-
fusion processes and formulate the valuation as an optimal stopping problem. Moreover,
we derive the value function of the option to postpone and its optimal boundary.

2 Preliminary
Let W (t) be a standard Brownian motion and N(t) be a Poisson process with the inten-

sity λ . Let Ji denote i.i.d. positive random variables. Yi ≡ logJi has a double exponential
distribution and its density function is given by

f (y) = pη1e−η1y1{y≥0}+qη2eη2y1{y<0},
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where η1 > 1,η2 > 0 and 0 ≤ p,q ≤ 1 such that p+ q = 1. The jump diffusion process
S(t) satisfies the stochastic differential equation

dS(t)
S(t−)

= µdt +κdW (t)+d(
N(t)

∑
i=1

(Ji −1)), (1)

where µ and κ > 0 are constants. Define another probability measure P̃ as

dP̃
dP

∣∣∣
Ft

= exp
{
−bW (t)− 1

2
b2t

}
, b =

µ − r+d +λζ
κ

,

where r and d are the positive constants. Ft = σ(W (s),N(s);s ≤ t,{Ji}) and

ζ = E[Ji]−1 =
pη1

η1 −1
+

qη2

η2 +1
−1.

By Girsanov’s theorem, W̃ (t) =W (t)−bt is a Brownian motion with respect to P̃.
We can rewrite (1) as

dS(t)
S(t−)

= (r−d −λζ )dt +κdW̃ (t)+d(
N(t)

∑
i=1

(Ji −1)). (2)

Solving (2) gives S(t) = S(0)expX(t), where

X(t) =
(

r−d − 1
2

κ2 −λζ
)

t +κW̃ (t)+
N(t)

∑
i=1

Yi.

Let V (v) be a function of class C2. Then the infinitesimal generator L of the process S(t)
is given by

LV (v) =
1
2

κ2v2V ′′(v)+(r−d −λζ )vV ′(v)+λ
∫ ∞

−∞
(V (vey)−V (v)) f (y)dy

for all v > 0.
Next we introduce the four real numbers β1,β2,β3 and β4. Kou and Wang [2] showed

that the equation G(θ) = α for all α > 0 has the solutions β1, β2,−β3, and −β4, where

G(θ) = θ
(

r−d − 1
2

κ2 −λζ
)
+

1
2

θ 2κ2 +λ
(

pη1

η1 −θ
+

qη2

η2 +θ
−1

)
.

And the four solutions satisfy

0 < β1 < η1 < β2 < ∞, 0 < β3 < η2 < β4 < ∞.

Let T0,∞ denote the set of all stopping times with values in the interval [0,∞]. We consider

the optimal stopping problem

V ∗(v) = sup
τ∈T0,∞

E[e−rτ(S(τ)− I)+ ∣ S(0) = v], I > 0
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where the supremum is taken for all stopping times τ . And the optimal stopping time τ̂ is
given by

τ̂ = inf{t > 0 ∣ S(t) ∈ S }
where S = {v ∣ V ∗(v) = (v− I)+}.

We introduce the function V (v) by

V (v) =
{

Avβ1 +Bvβ2 , 0 < v < v0
v− I, v ≥ v0.

We set v= ex and V (v)=V (ex)≡ V̂ (x). We determine the coefficients A1,A2 and v0 = ex0 .
By value matching condition, we have

Aeβ1x0 +Beβ2x0 = ex0 − I (3)

and by smooth pasting condition, we have

Aβ1eβ1x0 +Bβ2eβ2x0 = ex0 . (4)

We can get the last condition by using the infinitesimal generator L̂ of the process X(t)
given by

L̂ V̂ (x) =
1
2

κ2V̂ ′′(x)+(r−d − 1
2

κ2 −λζ )V̂ ′(x)+λ
∫ ∞

−∞
(V̂ (x+ y)−V̂ (x)) f (y)dy

for all x > 0. For x < x0, we obtain
∫ ∞

−∞
V̂ (x+ y) f (y)dy

=
∫ x0−x

0
(Aeβ1(x+y)+Beβ2(x+y))η1e−η1ydy+

∫ ∞

x0−x
ex+yη1e−η1ydy

= η1

(
A

η1 −β1
eβ1x +

B
η1 −β2

eβ2x
)

−η1e−η1(x0−x)
(

A
η1 −β1

eβ1x0 +
B

η1 −β2
eβ2x0 − ex0

η1 −1

)
.

From this, we obtain

(L̂− r)V̂ (x)

= Aeβ1x
(

1
2

β 2
1 +β1(r−d − 1

2
κ2 −λζ )

)
+Beβ2x

(
1
2

β 2
2 +β2(r−d − 1

2
κ2 −λζ )

)

+λ
∫ ∞

−∞
V̂ (x+ y) f (y)dy− (λ + r)V̂ (x)

= Aeβ1xg(β1)+Beβ2xg(β2)

−λ pη1e−η1(x0−x)
(

A
η1 −β1

eβ1x0 +
B

η1 −β2
eβ2x0 − ex0

η1 −1

)
,
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where g(x) = G(−x)− r. By Lemma 2.1 in Kou and Wang [2], we have g(β1) = g(β2) =
0. Since (L̂ − r)V̂ (x) = 0 holds, we get the condition

A
η1 −β1

eβ1x0 +
B

η1 −β2
eβ2x0 − ex0

η1 −1
= 0. (5)

Lemma 1.
Solving the following equations

Aeβ1x0 +Beβ2x0 = ex0 − I

Aβ1eβ1x0 +Bβ2eβ2x0 = ex0

A
η1 −β1

eβ1x0 +
B

η1 −β2
eβ2x0 =

ex0

η1 −1

give the solutions

A = e−β1x0
β2 −1
β2 −β1

(
ex0 − β2

β2 −1
I
)
,

B = e−β2x0
β1 −1
β2 −β1

(
β1

β1 −1
I − ex0

)
.

3 Main result
In this section we give the main theorem. In order to prove it, we needs the following

lemmas.

Lemma 2.
Assume that a function V (v) has the following properties.

1. (L − r)V (v)≤ 0, for v > v0.
2. It holds (L − r)V (v) = 0 and V (x) satisfies V (v)> (v− I)+ for 0 < v < v0.
3. At v = v0 we have V ′(v0−) =V ′(v0+).

Then, V is the value function of the option to postpone , i.e., V ∗ = V holds. The optimal
exercise region is the interval [v0,∞).

In what follows we will explore the properties of the function V (v) in the above
lemma.

Lemma 3.
For v > v0 the function V (v) satisfies

(L − r)V (v)≤ 0.

Lemma 4.
It holds (L − r)V (v) = 0 and V (v) satisfies V (v)> (v− I)+ for 0 < v < v0.
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Figure 1: The value function

Lemma 5.
At v = v0 we have V ′(v0−) =V ′(v0+).

Theorem 6.
Let V ∗(v) denote the value function of the option to postpone. Then V ∗(v) is given by

V ∗(v) =
{

A(v0)vβ1 +B(v0)vβ2 , 0 ≤ v ≤ v0
v− I, v ≥ v0

(6)

and the optimal stopping times is given by

τ̂ = inf{t > 0 ∣ S(t)≥ v0},
where the optimal boundary v0 is

v0 =
η1 −1

η1

β1

β1 −1
β2

β2 −1
I,

the coefficients A and B are

A(v0) = v−β1
0

β2 −1
β2 −β1

(
v0 −

β2

β2 −1
I
)
,

B(v0) = v−β2
0

β1 −1
β2 −β1

(
β1

β1 −1
I − v0

)
.

Moreover, the value function V ∗(v) is also represented by

V ∗(v) = Ẽ[
∫ ∞

0
e−αt(r−L )V (S(t))dt].

4 Numerical example
In this section we present numerical example. We set r = 0.1, =. 0.09, κ = 0.2, η1 =

50, λ = 3 and I = 100. By using these parameters, one has β1 = 2.426 and β2 = 51.480.
Figure 1 demonstrates the value function of the option to postpone(κ = 0.1,0.15,0.2).
From this figure, we can recognize that V ∗(v) is convex and increasing in v.
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