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Abstract In this paper, a new discrete-time GeomX /G/1 queue model with multiple vacations is
analyzed. The Probability Generating Function (P.G.F.) of the queue length is obtained by using
the method of an embedded Markov chain, and the mean of the queue length is obtained by using
L’Hospital rule. Then the P.G.F. of the busy period is derived, and the probabilities for the system
being in a busy state or in a vacation state are also derived. Moreover, the P.G.F. of the waiting time
is derived based on the independence between the arrival process and the waiting time. Finally,
some numerical results are shown to compare the means of the queue length and the waiting time
in special cases.
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1 Introduction
In the classical MX /G/1 queue, many MX /G/1 queues with vacation policy have been

studied by many researchers, and the Probability Generating Function (P.G.F.) of the
queue length and the Laplace-Stieltjes Transform (LST) of the waiting time have been
obtained [1]-[3]. For example, Hou and Lu studied an MX1

1 , MX2
2 /G/1 queue with single

vacation, obtained the P.G.F. of the queue length and the LST of the waiting time in [4].
Kawasaki and Takahashi analyzed the waiting time of a customer of an MX /G/1 queue
with/without vacations under a random order of service discipline in [5]. Thomo studied
an MX /G/1 queue with balking and multiple vacations by giving the P.G.F. of the queue
length and the LST of the waiting time in [6]. Lee, et al. analyzed an MX /G/1 queue with
N-policy and multiple vacations and obtained some performance measures of the system
in [7].

However, the studies about GeomX /G/1 queues are less numerous than those relating
to MX /G/1 queues. Therefore, we analyze a new discrete-time GeomX /G/1 queue with
exhaustive service rule and multiple vacations, based on the results of some former stud-
ies. We also obtain the P.G.F. of the stationary queue length, the LST of the waiting time
and the probability of system states. We give some numerical results for comparing these
performance measures. So the queue model enriches the theory of the GeomX /G/1 queue
with vacation, and involves some special case queue modeling.
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The paper is organized as follow. In section 2, we give the description of the new
model and its system parameters in detail. In section 3, we embed a Markov chain, and
show the necessary sufficient condition for positive recurrence. In section 4, we derive
the P.G.F. of the stationary queue length, the LST of the waiting time, and stochastic
decomposition results of stationary measures. In section 5, we discuss some numerical
results. Concluding remarks are given in section 6.

2 System Model
Based on the classical Geom/G/1 queue model, we study the queue model with an

exhaustive service rule and multiple vacations in [8], [9]. The service strategy can be
described as follows. Once there is no customer in the system, the server enters into a
vacation period of random length V . If there are some customers waiting at the vacation
completion instant, the server will start a new busy period until the system becomes empty
again, otherwise the server will take consecutive vacations according to the assistant work.
The possible number of vacations is from 1 to ∞. The system will continually repeat the
above processes. The queue model is denoted by GeomX /G/1 (E, MV), where E means
exhaustive service rule, MV means multiple vacations.

The basic assumptions of the new model presented in this paper are given as follows:
(1) We assume that the system states are in the discrete time instants. We assume that
customer arrivals can only occur at discrete time instants t = n−,n = 0,1, ..., the service
starts and ends can only occur at discrete time instants t = n+,n = 1,2, .... The model is
called a late arrival system. The inter-arrival time of a batch, denoted by Jn, is supposed
to be an independently identically distributed (i.i.d.) discrete random variable following
a geometric distribution with the parameter p (0 < p < 1). We can write the probability
distribution of Jn as follows:

P{Jn = k}= pp̄k−1, k = 1,2, ...

where p̄ = 1− p.
(2) The service time sequence {Bn,n ≥ 1} is an i.i.d. discrete random variable sequence
with a general distribution. The probability distribution gk and the Probability Generating
Function (P.G.F.) G(z) of gk are given as follows:

P{Bn = k}= gk, k ≥ 1, G(z) =
∞

∑
k=1

gkzk.

Let E[Bn] =
1
µ

be the mean of Bn. The variance D(Bn) = σ2 and the third origin moment

E[B3
n] of Bn exist and are limited.

(3) In this system model, the time axis is discrete-time into sequence of equal length called
slots. We denote by X the number of customers arriving during a single slot, the P.G.F. of
X is R(z). The mean and variance of X are E[X ] = r and D(X) = σ2

r , respectively.
(4) The time length Vn (n ≥ 1) of a vacation is a positive i.i.d. discrete random variable
with general probability distribution v j and the P.G.F. V (z) given by

P{Vn = j}= v j, j ≥ 1, V (z) =
∞

∑
j=1

v jz j.
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(5) Suppose that there is a single server in this system, and its buffer capacity is infinite.
{Jn,n ≥ 1}, {Bn,n ≥ 1}, {Vn,n ≥ 1} and X are mutually independent. The service order
is First-Come First-Served (FCFS).

3 Embedded Markov Chain
Let Ln represent the number of customers in the system left behind by the nth depart-

ing customer and let Yn represent the number of customers arriving in the service period
of the nth customer. Let N(t) be the number of customers arriving during the interval
[0, t], i.e. Yn = N(Bn). Let Qb be the number of customers in the system at the start instant
of a busy period. The probability distribution and P.G.F. of Qb are represented by bi, i ≥ 1
and Qb(z). We define a function as follows:

ε(x) =
{

1, x > 0,
0, x ≤ 0.

Since the basic assumptions of the system model as Yn+1,Ln and Qb are mutually inde-
pendent, we have that

Ln+1 = Ln − ε(Ln)+Yn+1 +(Qb −1)ε(1−Ln). (1)

Theorem 1.
Random sequence {Ln, n ≥ 1} is a homogeneous embedded Markov chain.

Theorem 2.
For the embedded Markov chain {Ln, n ≥ 1} of GeomX /G/1 (E, MV), the necessary and
sufficient condition of positive recurrence is the traffic intensity ρ =

pr
µ

< 1, where p is

distribution parameter of the inter-arrival time of a batch and r is the mean of X presented
in Section 2.
The proofs of theorems 1 and 2 are omitted.

Since Yn+1 = X1 +X2 + ...+XN(Bn+1), (X0 ≡ 0), we have that

E[Yn+1] = E[X1]E[N(Bn+1)] =
pr
µ

= ρ.

We denote by C(v)
j the probability that there are j batch arrivals during a vacation. Then

we have that C(v)
j =

∞
∑

r= j
vr
(r

j

)
p j p̄r− j, j ≥ 0 and

P(Qb = k) =
k

∑
i=1

C(v)
i

1−V (p̄)
P(X1 + ⋅ ⋅ ⋅+Xi = k), k ≥ 1,

Qb(z) =
∞

∑
k=1

zk
k

∑
i=1

C(v)
i

1−V (p̄)
P(X1 + ⋅ ⋅ ⋅+Xi = k) =

V (1− p(1−R(z)))−V (p̄)
1−V (p̄)

,

E[Qb] = Q′
b(z)∣z=1 =

prE[V ]

1−V (p̄)

where V (p̄) =
∞
∑
j=1

v j(p̄) j and V (1− p(1−R(z))) =
∞
∑
j=1

v j(1− p(1−R(z))) j.
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4 Performance Analysis of Queue System
4.1 Stationary Queue Length

If ρ =
pr
µ

< 1, let lim
n→∞

E[Ln+1] = lim
n→∞

E[Ln] =E[L], lim
n→∞

E[Yn+1] =E[Y ] =E[X ]E[N(B)],

where L is the limits of Ln, Y is the limits of Yn, X is the number of customers arriving dur-
ing a single slot, N(B) is the number of customers arriving during a busy period. Taking
the mean of the two sides of Eq. (1), we obtain the equation as follows:

E[ε(Ln)] = E[Y ]+E[Qb −1]E[ε(1−Ln)].

Since we have that

P{L > 0}= ρ +

(
prE[V ]

1−V (p̄)
−1
)

P{L = 0}

therefore

P{L = 0}= (1−ρ)(1−V (p̄))
prE[V ]

, P{L > 0}= prE[V ]− (1−ρ)(1−V (p̄))
prE[V ]

where E[V ] is the mean of V .
Taking the square of the two sides of Eq. (1), we have that

L2
n+1 = L2

n + ε(Ln)+Y 2
n+1 +(Qb −1)2ε(1−Ln)

−2Ln +2LnYn+1 −2Yn+1ε(Ln)+2Yn+1(Qb −1)ε(1−Ln) (2)

where

E[Y 2
n+1] = E[N2(Bn+1)] = rρ +ρ2 + p2r2σ2 +

p
µ

σ2
r ,

E[(Qb −1)2ε(1−Ln)] = P(Ln = 0)(E[Q2
b]−2E[Qb]+1)

=
(1−ρ)
prE[V ]

(
p2E[V 2]r2 +(1−V (p̄))+ pE[V ](σ2

r + r2 − r)
)
,

E[2LnYn+1] = 2E[Yn+1]E[Ln] = 2ρE[Ln],

E[2Yn+1ε(Ln)] = 2ρP(Ln > 0) =
2ρ(prE[V ]− (1−ρ)(1−V (p̄)))

prE[V ]
,

E[2Yn+1(Qb −1)ε(1−Ln)] = 2ρ(1−ρ)
(

1− 1−V (p̄)
prE[V ]

)
.

Performance Analysis of GeomX /G/1 Queue 427



Taking the mean of the two sides of Eq. (2), we obtain the equation as follows:

0 =
prE[V ]− (1−ρ)(1−V (p̄))

prE[V ]
+ rρ +ρ2 + p2r2σ2

+
p
µ

σ2
r +

(1−ρ)
prE[V ]

(p2E[V 2]r2 + pE[V ](σ2
r + r2 −2r)

+(1−V (p̄)))−2E[L]+2ρE[L]− 2ρ(prE[V ]− (1−ρ)(1−V (p̄)))
prE[V ]

+2ρ(1−ρ)
(

1− 1−V (p̄)
prE[V ]

)
.

Therefore, we obtain that

E[L] = ρ +
p2r2σ2 +ρ2

2(1−ρ)
+

σ2
r +ρ2 − r
2r(1−ρ)

+
prE[V 2]

2E[V ]
. (3)

Suppose that the service order of the batch is FCFS, and the service order of customers
in the same batch is random. Let L(v)

n (z) be the P.G.F of Ln, and Lv(z) = lim
n→∞

L(v)
n (z).

Theorem 3.
If ρ < 1, the stationary queue length Lv in GeomX /G/1 (E, MV) queue can be decomposed
into two independent random variables L and Ld , then we have

Lv = L+Ld

where L is the stationary queue length in the classical GeomX /G/1 queue. The P.G.F.
L(z) of L is given by

L(z) =
(1−ρ)(R(z)−1)G(1− p(1−R(z)))

rz− rG(1− p(1−R(z)))

where R(z) is the P.G.F. of X and G(z) is the P.G.F. of the service time Bn defined in

Section 2, G(1− p(1−R(z))) =
∞
∑

k=1
gk(1− p(1−R(z)))k.

Ld is an additional queue length. The P.G.F. Ld(z) of Ld is given by

Ld(z) =
1−V (1− p(1−R(z)))

pE[V ](1−R(z))
.

Proof. Taking the P.G.F. of the two sides of Eq. (1), and letting n → ∞, we obtain the
equation as follows:

Lv(z) = lim
n→∞

L(v)
n (z)

= E[zY ] lim
n→∞

E[z(Ln−ε(Ln)+(Qb−1)ε(1−Ln))]

= G(1− p(1−R(z))) lim
n→∞

∞

∑
k=0

E[z(k−ε(k)+(Qb−1)ε(1−k))]P(Ln = k)

= G(1− p(1−R(z)))
(
(1−ρ)(1−V (p̄))

prE[V ]

V (1− p(1−R(z)))−V (p̄)
z(1−V (p̄))

+
1
z

(
Lv(z)−

(1−ρ)(1−V (p̄))
prE[V ]

))
. (4)
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Combining and arranging Eq. (4), we obtain the P.G.F. Lv(z) as follows:

Lv(z) =
(1−ρ)(R(z)−1)G(1− p(1−R(z)))

rz− rG(1− p(1−R(z)))
1−V (1− p(1−R(z)))

pE[V ](1−R(z))
. (5)

Therefore, the P.G.F. Ld(z) and the mean E[Ld ] of the additional queue length Ld are given
by

Ld(z) =
1−V (1− p(1−R(z)))

pE[V ](1−R(z))
, E[Ld ] =

prE[V 2]

2E[V ]
.

4.2 Busy Period and Busy Cycle
For a GeomX /G/1 (E, MV) queue, the busy period is considered to be a time interval,

in which the system serves all Qb customers arrived in the system until the system be-
comes empty under the condition that when the system comes back from a vacation state,
there are Qb customers waiting in the system. Let Θ denote the total busy period of the
queue model when there are Qb customers arrived in the system. So Θ will be the busy
period of GeomX /G/1 (E, MV) queue. Let θ denote the time interval in which the system
serves one customer and all customers arrived in the system when the system serves this
customer. Let θ(z) and Θ(z) be the P.G.Fs. of θ and Θ, we then have that

Θ =
Qb

∑
i=1

θi

where θ1,θ2,θ3, ... are mutually independent, and they have the same distribution as θ .
We have that

Θ(z) = Qb(θ(z)) =
V (1− p(1−R(θ(z))))−V (p̄)

1−V (p̄)
.

Since

θ = B+Θ1 +Θ2 + ...+ΘN(B), Θ =U +Θ1 +Θ2 + ...+ΘN(U)

where Θ1,Θ2, ... are mutually independent, and have the same distribution as Θ. U =
Qb
∑

i=1
Bi, B1,B2, ... are mutually independent, and have the same distribution as B, where

B is the busy period of Geom/G/1 queue and N(U) is the number of customers arriving
during the interval [0,U ].

θ(z) = E[zθ ] = G
(

z− pz
1−V (1− p(1−R(θ(z))))

1−V (p̄)

)
,

therefore

Θ(z) = Qb(θ(z)) =
V (1− p(1−R(B(z− pz(1−Θ(z))))))−V (p̄)

1−V (p̄)
.
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Since

E[U ] = E

[
Qb

∑
i=1

Bi

]
= E[Qb]E[B] =

prE[V ]

1−V (p̄)
1
µ

=
ρE[V ]

1−V (p̄)
,

D(U) =
1

1−V (p̄)

(
prE[V ]σ2 +ρ2E[V 2]+

p
µ2 E[V ]σ2

r +
rρ
µ

E[V ]

)
−
(

ρE[V ]

1−V (p̄)

)2

,

E[N(U)] = E

[
N

(
Qb

∑
i=1

Bi

)]
= λE

[
Qb

∑
i=1

Bi

]
=

pρE[V ]

1−V (p̄)
,

E[Θ] = E[U ]+E

[
N(U)

∑
i=1

Θi

]
=

ρE[V ]

1−V (p̄)
+

pρE[V ]

1−V (p̄)
E[Θ]

where E[U ] and D(U) are the mean and the variance of U , E[N(U)] is the mean of N(U)
and E[Q] is the mean of Qb. With E[U ], D(U) and E[N(U)], we have

E[Θ] =
ρE[V ]

1−V (p̄)− pρE[V ]
, E[θ ] =

E[Θ]

E[Qb]
=

1−V (p̄)
µ(1−V (p̄)− pρE[V ])

. (6)

Define the busy cycle Bc as the time period between two consecutive busy period
ending instants, K as the vacation times in one whole vacation period, VG as the total
length of K consecutive vacations, and Jn as inter-arrival time. We have that

P{K = j}= P{V ( j−1) < Jn <V ( j)}= (V (p̄)) j−1(1−V (p̄)), j ≥ 1,

VG =
∞

∑
j=1

(1−V (p̄))(V (p̄)) j−1V ( j),

therefore, the mean total length of a vacation can be obtained as follows:

E[VG] =
∞

∑
j=1

(1−V (p̄))(V (p̄)) j−1 jE[V ] =
E[V ]

1−V (p̄)
.

The mean busy cycle E[Bc] is given as follows:

E[Bc] = E[Θ]+E[VG] =
E[V ]((1+ρ)(1−V (p̄))− pρE[V ])

(1−V (p̄))(1−V (p̄)− pρE[V ])
.

Let pB and pV be the probabilities of the server being in a busy state and a vacation
state, respectively. We have that

pB =
ρ(1−V (p̄))

(1+ρ)(1−V (p̄))− pρE[V ]
, pV =

1−V (p̄)− pρE[V ]

(1+ρ)(1−V (p̄))− pρE[V ]
.

4.3 Stationary Waiting Time
Theorem 4.
If ρ < 1, the stationary waiting time WF in a GeomX /G/1 (E, MV) queue can be decom-
posed into two independent random variables W and Wd . Then we have

WF =W +Wd
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where W is the stationary queue length in a classical GeomX /G/1 queue, the P.G.F. W (z)
of W is given by

W (z) =
(1−ρ)(1− z)(1−R(G(z)))

r(1− z− p(1−R(G(z))))(1−G(z))

where R(G(z)) is the value of R(z) at G(z) point, G(z) is the P.G.F. of the service time. Wd
is the additional delay. The P.G.F. Wd(z) of the additional delay Wd is given by

Wd(z) =
1−V (z)

E[V ](1− z)
.

Proof: We denote by WF the waiting time of a customer for the queue system with
FCFS order. WF contains two parts: one part is the waiting time W1 of the batch in which
the customer is, the other part is the waiting time W2 of the customer in its batch. Let
WF(z),W1(z) and W2(z) be the P.G.Fs. of WF ,W1 and W2, respectively. Since W1 and W2
are mutually independent, we have that

WF(z) =W1(z)W2(z). (7)

Let the waiting time of a batch of customers be H =
X
∑

i=1
Bi, then the P.G.F. H(z) of H

is given by

H(z) = R(G(z)). (8)

Substituting H(z) into G(z) in the P.G.F. of the waiting time for Geom/G/1 (E, MV) queue
[9], we have that

W1(z) =
(1−ρ)(1−V (z))

E[V ](1− z− p(1−R(G(z))))
. (9)

Deriving the two sides of Eq. (9) and using L’Hospital rule, we obtain the mean E[W1]
of W1 as follows:

E[W1] =
pE[H2]

2(1−ρ)
+

E[V 2]

2E[V ]
=

p(rµ2σ2 +σ2
r + r2)

2µ2(1−ρ)
+

E[V 2]

2E[V ]
.

Let [A] represent an arbitrary customer in a batch of customers, so customer [A] can
appear in any position of X positions. And the service time of a batch of customers is

H =
X
∑

i=1
Bi. If any one instant is chosen in H, the instant must be in a certain service time

B by probability 1, so the age H− of H is equal to the sum of W2 and age B− of B, i.e.,
H− = B−+W2.

Since B− and W2 are mutually independent, H(z) = R(G(z)), E[H] =
r
µ

and D(H) =

rσ2 +
σ2

r

µ2 , we have, H−(z) = B−(z)W2(z), then

1−H(z)
E[H](1− z)

=
1−G(z)

E[B](1− z)
W2(z). (10)
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Simplifying Eq. (10), we have that

W2(z) =
1−H(z)
1−G(z)

E[B]
E[H]

=
1−R(G(z))
r(1−G(z))

. (11)

Deriving the two sides of Eq. (11) and using L’Hospital rule, we obtain the mean E[W2]
of W2 as follows:

E[W2] = E[H−]−E[B−] =
E[H2]

2E[H]
− E[B2]

2E[B]
=

σ2
r + r2 − r

2rµ
.

Finally, combining Eqs. (7), (9) and (11), we obtain the P.G.F. WF(z) and the mean E[WF ]
of WF as follows:

WF(z) =
(1−ρ)(1−V (p̄))(1−R(G(z)))

rE[V ](1− z− p(1−R(G(z))))((1−G(z)))
, (12)

E[WF ] =
pr2µ2σ2 +µσ 2

r + rµ(r+ρ −1)
2rµ2(1−ρ)

+
E[V 2]

2E[V ]
. (13)

5 Numerical Results
In this section, we present some numerical results that provide insight into the system

behavior. Using the equations presented in Section 4, we can numerically compare the
performance measures of the systems for the three different cases of GeomX /G/1 (E, MV)
queue models with θ = 0.25, θ = 0.10, θ = 0.05, where θ is the parameter of geometric
distribution which V follows. Here we assume that the service time S and the time length
V of a vacation follow geometric distributions, i.e., S follows a geometric distribution
with parameter µ = 1/3. V follows another geometric distribution with parameter θ . By
using Eqs. (3) and (13), we can derive the mean queue length E[L] and the waiting time
E[WF ]. Suppose that the traffic intensity ρ range is from 0.1 to 0.9.

Figure 1 shows the mean queue length E[L] as a function of the traffic intensity ρ
with three cases of θ , i.e., θ = 0.25, θ = 0.10, θ = 0.05, where X = 1/3. We can find
that when ρ increases, E[L] increases to a high level for all the cases. This is because
the larger the traffic intensity ρ is, the higher the possibility that there will be customers
arriving during the server cycle will be. And we also note that the mean queue length E[L]
of GeomX /G/1 (E, MV) queue with θ = 0.05 is larger than that of GeomX /G/1 (E, MV)
queue with θ = 0.25. This is because the longer the length of the vacation times is, the
larger the mean queue length E[L] will be.

Figure 2 shows how the mean waiting time E[WF ] changes with the traffic intensity ρ
for the three different cases of θ , i.e., θ = 0.25, θ = 0.10, θ = 0.05, where X = 1/3. We
can find that when ρ increases, E[WF ] increases to a high level. This is because the larger
the traffic intensity ρ is, the higher the possibility that there will be customers arriving
during the server cycle will be, so the mean waiting time will be larger. We also note that
the mean waiting time E[WF ] of GeomX /G/1 (E, MV) queue with θ = 0.05 is larger than
that of GeomX /G/1 (E, MV) queue with θ = 0.25. This is because the longer the length
of the vacation time is, the greater the mean waiting time E[WF ] will be.

Figure 3 shows the mean queue length E[L] as a function of the traffic intensity ρ
with three cases of X . Namely, in the first case, X follows a geometric distribution with
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Figure 1: Mean queue length E[L] versus traffic intensity ρ .
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Figure 2: Mean waiting time E[WF ] versus traffic intensity ρ .

parameter X = 1/3. In the second case, X follows a degenerate distribution, and in the
third case, X follows a Poisson distribution with parameter λ = 3, where θ = 0.25. We
can find that when ρ increases, E[L] increases to a high level in all cases. This is because
the larger the traffic intensity ρ is, the higher the possibility that there will be customers
arriving during the server cycle will be. We also note that the mean queue length E[L] of a
GeomX /G/1 (E, MV) queue in which X follows degenerate distribution is larger than that
of a GeomX /G/1 (E, MV) queue in which X follows Poisson distribution. This is because
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Figure 3: Mean queue length E[L] versus traffic intensity ρ .

the higher the possibility that there are customers arriving during the server cycle, the
larger the mean queue length E[L] in the second case will be.
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Figure 4: Mean waiting time E[WF ] versus traffic intensity ρ .

Figure 4 shows how the mean waiting time E[WF ] changes with the traffic intensity
ρ with three cases of X . Namely, in the first case, X follows a geometric distribution
with parameter X = 1/3. In the second case, X follows a degenerate distribution, and in
the third case, X follows a Poisson distribution with parameter λ = 3, where θ = 0.25.
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We can find that when ρ increases, E[WF ] increases to a high level. This is because the
greater the traffic intensity ρ is, the higher the possibility that there will be customers
arriving during the server cycle will be, so the mean waiting time will be greater. We
also note that the mean waiting time E[WF ] of a GeomX /G/1 (E, MV) queue in which
X follows degenerate distribution is larger than that of a GeomX /G/1 (E, MV) queue in
which X follows Poisson distribution. This is because the higher the possibility that there
are customers arriving during the server cycle, the larger the mean waiting time E[WF ] in
the second case will be.

6 Conclusion
In this paper, we presented a detailed description of a new discrete-time GeomX / G/1

queue model with multiple vacations. By using the method of an embedded Markov
chain, we derived the P.G.Fs. of the queue length and the customers waiting time. Fur-
thermore, we presented the stochastic decompositions for the additional queue length and
the additional delay. We obtained the probabilities for the system being in a busy state
or in a vacation state, respectively. Finally, we gave some numerical results to compare
the means of the queue length and the waiting time in special cases. This model is an
extension of a Geom/G/1 queue with multiple vacations.
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