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Abstract In this paper, a new local-world evolving network model including triad formation
mechanism is proposed and studied. Analytical expressions for degree distribution and cluster-
ing coefficient are derived using continuum theory. It is shown that the degree distribution transfers
from exponential to power-law scaling, and the clustering coefficient is tunable with known param-
eters. Finally, the numerical simulations of degree distribution are given, and we can observe our
analytical results are in good agreement with the simulations.

Keywords Local-world; Degree distribution; Clustering coefficient

1 Introduction
Networks exist in every aspect of our life and society. Many complex systems such

as World Wide Web(WWW)[1], Internet[2], movie actor collaboration[3], human sexual
contacts[4] and so on can be described as complex networks. Despite their diversities,
such kind of networks have some common characteristics, like power-law degree distri-
bution, high clustering coefficient and short average path length.

To model these systems and capture the properties of real networks, a lot of studies
have been done in this field. At the beginning, the work was focused on regular graphs.
Later, Erdös and Rényi[5-6] built the random graph theory, which was thought as the sim-
plest realization of complex networks to explain real world phenomena. Being aware of
the truth that many real complex networks are neither completely regular nor completely
random, Watts and Strogatz[7] introduced the small-world model. It is found that this
model displays high clustering and short average path length of real networks. The com-
mon feature of small-world model and random graph model is that the probability P(k)
that a node in the network connected to k other nodes is bounded, decaying exponentially
for large k.

Although the small-world model captures some important traits of real networks,
Barabási and Albert[1][3][8][9] found that the degree distribution of real networks are
not Poisson but power-law. They had researches on WWW and revealed that the degree
distribution of WWW is power-law[1]. In[8], they stated a growing network(BA model)
with growth and preferential attachment. They used the mean-field method to compute
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the degree distribution. It is shown that after many steps the proportion of nodes with
degree k is power law, i.e. P(k) ∼ k−3. They also pointed out that most real networks
are scale-free[9]. In order to make a better understanding of the phenomena in real net-
works, many scholars did researches on BA model, they also had extensions to BA model
and got a lot of useful results. Bollobás[10] presented a modified BA model allowing for
loops and multiple edges. Homle and Kim[11] extended the BA model to include triad
formation(TF) step, which causes the clustering coefficient to be tunable.

Motivated by the fact that only part of network information is needed in networks like
world trade web[12], scientific citation network, Li and Chen[13] put forward a local-
world(LC) model and obtained a transition between power-law and exponential scaling
to degree distribution. Following them, Wang and Zhang[14] studied an evolving model
of scale-free network with adjustable clustering. Zhang and Rong[15] modified the LC
model by adding an additional triad formation step.

Real networks like interpersonal relationship network, people are inclined to make
friends with the similar background or hierarchy, thus give rise to local-world or com-
munities. In a certain local world, new friends will come in to make friends with people
already in the local-world, sometimes people introduce new friend to his old friend. Ex-
cept for this, people already in network will open relationships among each other from
time to time. Based on features of real networks, we propose a new extensive network
model which take many possible cases together. Statistical characteristics like degree
distribution and clustering coefficient are analyzed. Numerical simulations are also per-
formed to inspect the validity of our theoretical results. It is found that our model unifies
generic properties of real-life networks.

2 Model description
Start with a small number of m0 nodes and e0 edges. At each time step, select M

nodes randomly from the present network as the local world. With probability p add a
new node, and with probability 1− p add m edges between old nodes.

(a) When adding a new node, the new node v connects to m different nodes in the
local-world of node v. For each of the m steps, we perform a LPA step first, then with
probability q there is an additional TF step followed.

Local Preferential Attachment (LPA) step: The probability that an old node i of the
local-world get a degree is given by:

∏
local

(ki) = ∏(i ∈ local)
ki

∑
j∈local

k j
, (1)

where ∏(i ∈ local) = M/Nt , Nt is size of the network at time t.
Triad Formation(TF) step: In the previous LPA step if there is an edge connecting

the new node v and an existing node i, then we add one more edge from node v to a
randomly selected neighbor of node i with probability q. If all neighbors of node i have
been connected to node v, this step is omitted.

(b) When adding edges between old nodes, firstly select a node from the local-world
preferentially, then add an edge among its two different neighbors selected randomly.
Repeat this step until m edges are added.
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Note that m ≤ M ≤ m0 + pt. After t time steps, the model develops to a network with
Nt = m0 + pt nodes and expected Et = e0+mt(1+ pq) edges. Thus the average degree of
the network is

< k >=
2e0 +2mt(1+ pq)

m0 + pt
≈ 2m(1+ pq)

p
. (2)

3 Network analysis
We use continuum theory and rate equations to analyze two important statistical char-

acteristics of the network. One is degree distribution, the other is clustering coefficient.

3.1 Degree distribution
A: Case of M = m
According to continuum theory, we assume that the degree ki of node i is continuous,

thus the degree change rate of node i is:

∂ki

∂ t
= pm

M
Nt

1
M

+ pmq
M
Nt

∑
n∈Ωi

1
M

1
kn

+2(1− p)m
M
Nt

∑
n∈Ωi

1
M

1
kn
. (3)

Where Ωi is the set of neighbors of node i, and kn represents the degree of neighbor node
n of node i. Simplify Eq.(3) and use the approximation of < k > to replace kn, so we have

∂ki

∂ t
≈ m

t
+

2−2p+ pq
2(1+ pq)

ki

t
. (4)

Denote 2(1+pq)
2−2p+pq = Apq. Solve this equation with initial condition ki(ti) = m(1+ q),

and the probability density Pi(ti) = 1
m0+pt , thus the degree distribution P(k) is given by:

P(k) =
Apq

p

(
m(pq2 + pq−2p+2q+4)

2−2p+ pq

)Apq

(k+mApq)
−Apq−1. (5)

This can be write in the form P(k) ∼ (k + κ)−γ , where κ = mApq = 2m(1+pq)
2−2p+pq and

γ = Apq +1 = 4+3pq−2p
2−2p+pq . When k ≫ κ , P(k) ∼ k−γ . When k ≪ κ , ln[P(k)] ∼ −γln(k+

κ) =−γ [ln(1+ k
κ )+ lnκ]∼−γ[ k

κ + lnκ]. Thus

P(k)∼ 1
κγ exp(−γk

κ
). (6)

That is to say, in this case, the degree distribution is of exponential form.
B: Case of m < M ≤ m0 + pt
For node i with degree ki, ki changes as

∂ki
∂ t = pm M

m0+pt
ki

∑
j∈local

k j
+ pmq M

m0+pt ∑
n∈Ωi

kn
∑

j∈local
k j

1
kn

+2(1− p)m M
m0+pt ∑

n∈Ωi

kn
∑

j∈local
k j

1
kn
.

(7)
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The first item in the sum is due to the degree increase of node i in a LPA step. The second
item is a TF step. The last item is the edges adding between old nodes. Node i is one of
the neighbors of preferentially selected node n in the local-world, then node i is randomly
selected to add an edge to another neighbor of node n. Using (2) and the assumption that

∑
j∈local

k j = M < k >[13], we can get

∂ki

∂ t
≈ pq− p+2

2(1+ pq)
ki

t
. (8)

With the initial condition, ki(ti) = m(1+q), we have

P(k) =
2(1+ pq)

p2q− p2 +2p
[m(1+q)]

2(1+pq)
pq−p+2 k−

3pq−p+4
pq−p+2 ∼ k−

3pq−p+4
pq−p+2 . (9)

This means that the degree distribution of m < M ≤ m0 + pt follows a power law distri-
bution, and the scaling exponent is γ = 3pq−p+4

pq−p+2 .

(a) p=0.98, q=0.2, m=3, M=3 (b) p=0.98, q=0.97, m=3, M=3 (c) p=0.9, q=0.97, m=3, M=4

Figure 1: Degree distribution P(k) versus k in linear-log scale with M ≈ m. The size of
network is 60000. ∗ are the simulation results, while the solid lines are theoretical results
predicted by Eq.(6).

(a) p=0.98, q=0.2, m=3, M=20 (b) p=0.98, q=0.97, m=3, M=20

Figure 2: Degree distribution P(k) versus k in log-log scale with M > m. The size of
network is 60000. ∗ are the simulation results, while the solid lines are theoretical results
predicted by Eq.(9).
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In order to verify our theoretical results, numerical simulations are performed. Figure
1 and Figure 2 show the analytical calculation and numerical results of case A and B
for different M interval. In Figure 1, all the three are cases of M ≈ m. Solid lines are
theoretic results predicted by Eq.(6). Observe these three cases, it’s easy to find that
whatever the values of p and q, in case of M ≈ m, the degree distribution of our model
displays exponential scaling. Figure 2 is the situation of M ≫ m. Solid lines are theoretic
results predicted by Eq.(9), both of their slope are γ = 3. Figure 2 shows that under this
condition, the degree distribution exhibits power-law form, and the degree exponent is 3.

3.2 Clustering coefficient
By definition, the clustering coefficient of node i is the ratio of the total number ei of

existing edges between all its ki nearest neighbors and the number of ki(ki − 1)/2 of all
possible edges between them. That is Ci = 2ei/[ki(ki −1)]. And the clustering coefficient
of the whole network is the average of all individual Ci.

In our model there are 6 cases that will lead the change of ei. Figure 3 shows the
mechanisms of these cases.

Figure 3: Possible cases of increasing ei.

(a) node i is connected to the new node in a LPA step, followed by a TF step, one of
i’s neighbor is also connected to the new node.

(b) one of node i’s neighbor is selected to the new node in the LPA step, and then in a
TF step the new node connect to node i.

(c) in a LPA step node i is linked to the new node and in another LPA step, one of
node i’s neighbor is also linked to the new node.

(d) one of node i’s neighbor is linked in a LPA step, followed by a TF step, node i is
connected to the new node. Also in the same case, one of node i’s another neighbor is
linked to the new node by a TF step.

(e) node i is connected to the new node in a LPA step, and one of node i’s neighbor is
connected to the new node in a TF step after another LPA step.

(f) node i is preferentially selected to pick two of its neighbors to link randomly.
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Sort this cases together, the rate equation for ei is

∂ei
∂ t = pm M

m0+pt
ki

∑
j∈local

k j
q+ pm M

m0+pt ∑
n∈Ωi

kn
∑

j∈local
k j

1
kn

q

+pm M
m0+pt

ki
∑

j∈local
k j
(m−1) M

m0+pt ∑
n∈Ωi

kn
∑

j∈local
k j

+pm M
m0+pt ∑

n∗∈Ωi

k∗n
∑

j∈local
k j

1
k∗n

q(m−1) M
m0+pt ∑

n′∈Ωn

kn′
∑

j∈local
k j

q

+pm M
m0+pt

ki
∑

j∈local
k j
(m−1) M

m0+pt ∑
n′∈Ωn

kn′
∑

j∈local
k j

q+(1− p)m M
m0+pt

ki
∑

j∈local
k j
,

(10)
where node n and n∗ are neighbors of node i, node n′ is a neighbor of node n. Ωi represent
all neighbors of node i.

Solve this equation, we have

ei =
2pq− p+1

1+ pq
(ki − e0)+(1+q+q2)

(m−1)p2

16(1+ pq)
k2

i
(lnNt)

2

Nt
(11)

Thus the clustering coefficient for nodes with degree k is

C(k) =
2e

k(k−1)
≈ 4pq−2p+2

(1+ pq)k
+(1+q+q2)

(m−1)p2

8(1+ pq)
(lnNt)

2

Nt
. (12)

From the above equation, we see that the clustering coefficient C(k) can be tuned by
parameters p and q. In particular, q is the main factor to have C(k) changed.

In case of p = 1,q = 0, we get the clustering coefficient C(k) of the LC model[13].

C(k) =
m−1

8
(lnN)2

N
. (13)

where N is the network size.

4 Conclusions
In this paper, we proposed an extended local-world evolving network model. The

degree distribution of this model can change from exponential to power-law with different
parameters. Also, the clustering coefficient is tunable with p and q. It reflects some
important properties of real networks. For the special cases, when p = 1,q = 0, and
m < M < m0 + t, our model is the case of LC model proposed by Li and Chen[13]. When
p = 1,q = 0, and M = m, it is a growing network with uniform attachment of case A in
Barabási[8]. When p = 1,q = 0, and M = m0 + t, it turns to be the original BA model[8].

Also, it should be pointed out that, local-world networks with link-deleting and node-
deleting and so on are also exist in real networks, so our future work should contain all
these cases together to give a more realistic model.
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