
Minimizing Total Weighted Completion Time
on Uniform Machines with Unbounded Batch∗

Cuixia Miao1, 2,† Yu-Zhong Zhang1 Jianfeng Ren1

1Institute of Operations Research, Qufu Normal University, Rizhao, Shandong, 276826, China
2School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong, 273165, China

Abstract In this paper, we consider the scheduling problem of minimizing total weighted com-
pletion time on uniform machines with unbounded batch. Each of the machine Ml (l = 1, ⋅ ⋅ ⋅ ,m)
has a speed sl and can process up to B(≥ n) jobs simultaneously as a batch. The processing time of
a batch denoted by P(B) is given by the processing time of the longest job in it, and the running time
of the batch on machine Ml is P(B)

sl
. We present some useful properties of the optimal schedule, and

then design an O(nm+2) time backward dynamic programming algorithm for the problem.

Keywords Uniform machines with unbounded batch; batch-SPT; dynamic programming algo-
rithm; polynomially solvable

1 Introduction
The batching schedule is motivated by burn-in operations in semiconductor manu-

facturing. Lee et al. ([1]) provided a background description, Webster and Baker ([2])
presented an overview of algorithms and complexity results for scheduling batch process-
ing machines. This processing system has been extensively studied in the last decade ([3],
[9], [12]).

For the batching schedule, there are two distinct models: the bounded model, in which
the bound B for each batch size is effective, i.e., B < n, where n is the number of jobs, the
unbounded model, in which there is effectively no limit on the size of batch, i.e., B ≥ n
or B(∞). Problems of bounded model arise in the manufacture of integrated circuits ([1]),
the critical final stage in the production of circuits is the burn-in operation, in which chips
are loaded on boards which are then placed in an oven and exposed to high temperatures,
each chip has a pre-specified minimum burn-in time and the burn-in oven has a limited
capacity; scheduling problems of unbounded model arise for instance in situations where
compositions need to be hardened in kilns and the kiln is sufficiently large that it does not
restrict batch sizes ([4]). Zhang ([9]) gave a survey on both of the two models.

In this paper, we only address the unbounded model and the objective is to minimizing
the total weighted completion time.

∗This paper was supported by the National Natural Science Foundation (10671108), the PH.D Funds of
Shandong Province (2007BS01014) and the Funds of Qufu Normal University (XJ0714).

†Corresponding author. E-mail address: miaocuixia@126.com

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 402–408

Previous related results: Under the off-line setting, for the problem of minimizing to-
tal weighted completion time on a single machine with unbounded batch, when all the
jobs are released at the same time, Brucker ([4]) presented a dynamic programming algo-
rithm in polynomial time; for general release times, Deng and Zhang ([5]) proved that the
problem is NP-hard, and they further showed that several important special cases of the
problem can be solved in polynomial time, and for the general case, Li et al. ([6]) gave
a polynomial time approximation scheme (PTAS), and they ([7]) also presented a poly-
nomial time approximation scheme (PTAS) for problem of minimizing total weighted
completion time on identical parallel unbounded batch machines. Under the on-line set-
ting and on a single unbounded batch machine, Chen ([8]) provided an on-line algorithm
with 10

3 −competitive. ([4], [10]) give the motive of this paper.
Our contributions: We address the scheduling problem of minimizing total weighted
completion time on uniform machines with unbounded batch for the first time. When jobs
are released at the same time, we present some useful properties of the optimal schedule,
and design an O(nm+2) time backward dynamic programming algorithm in this paper.

2 Assumptions, Notations and Preliminaries
We are given a set of n independent jobs J = {J1, ⋅ ⋅ ⋅ ,Jn}. Each job J j (j = 1, ⋅ ⋅ ⋅ ,n)

requires processing time p j which specifies the minimum time needed to process the job,
and a weight w j which is a measure of its importance, all the jobs are released at time
zero.

There is a set of m uniform machines M = {M1, ⋅ ⋅ ⋅ ,Mm}. Each machine Ml (l =
1, ⋅ ⋅ ⋅ ,m) has a speed sl , and can process up to B(≥ n) jobs simultaneously as a batch.

The jobs that are processed together form a batch, we also denote it by B, and the
processing time of the batch denoted by p(B) is given by the processing time of the
longest job in the batch, i.e., p(B) = max{p j∣J j ∈ B}, and the running time of the batch
on machine Ml is P(B)

sl
. All jobs contained in the same batch start and complete at the

same time. Once processing of a batch is initiated, it can not be interrupted and other jobs
cannot be introduced into the batch until processing is completed.

The objective is to schedule the jobs on the set of m uniform machines with unbounded
batch so as to minimize ∑w jC j, where C j denotes the completion time of job J j. Using
the 3−field notation of Graham et al. ([11]), we denote our problem as: Qm∣B(∞)∣∑w jC j,
and Qm∣B(∞)∣∑C j for w j = 1 (j = 1, ⋅ ⋅ ⋅ ,n).
Definition 1 We say that a sequence is in batch-SPT if for any two batches Bx and By
in the sequence, where Bx is processed before By, there is no pair of jobs Ji, J j such that
Ji ∈ By, J j ∈ Bx and pi < p j.

3 Dynamic Programming Algorithm for Qm∣B(∞)∣∑w jC j
In this section, for the problem Qm∣B(∞)∣∑w jC j, we present some properties of the

optimal schedule, and design a backward dynamic programming algorithm in polynomial
time for it.

Firstly, we assume that the jobs are numbered in SPT order so that p1 ≤ ⋅⋅ ⋅ ≤ pn.

Minimizing Total Weighted Completion Time on Uniform Machines 403

3.1 Properties of Optimal Schedule
Theorem 1 For the problem Qm∣B(∞)∣∑w jC j, there exists an optimal schedule satisfying
the following properties:
(i) In each batch of the schedule, the indices of its jobs are consecutive in SPT order, i.e.,
one batch Bi = {Jni ,Jni+1, ⋅ ⋅ ⋅ ,Jni+1−1} in the schedule.
(ii) On each machine, the batches are sequenced in batch-SPT, i.e., if the schedule on
machine Ml (l = 1, ⋅ ⋅ ⋅ ,m) is π l = {Bl

1, ⋅ ⋅ ⋅ ,Bl
nl
} , then P(Bl

1) < ⋅ ⋅ ⋅ < P(Bl
nl
), where Bl

j
(j = 1, ⋅ ⋅ ⋅ ,nl) is the j-th batch and nl is the number of batches assigned to Ml in the
schedule.
Proof. We consider any optimal schedule π = {π1, ⋅ ⋅ ⋅ ,πm} on the number of m uniform
machines, where π l = {Bl

1, ⋅ ⋅ ⋅ ,Bl
nl
} is the subschedule on machine Ml (l = 1, ⋅ ⋅ ⋅ ,m) in

π .
(i) Suppose that there are two different batches Bl1

x and Bl2
y , and there are three jobs

J j, J j+1, J j+2 with p j ≤ p j+1 ≤ p j+2 and J j, J j+2 belong to Bl1
x , J j+1 belongs to Bl2

y .
We distinguish between two cases:

Case 1. l1 = l2 = l, that is, Bl1
x and Bl2

y are on the same machine.
Case 1.1. x < y
We can get a new subschedule π ′l = {Bl

1, ⋅ ⋅ ⋅ ,Bl
x ∪{J j+1}, ⋅ ⋅ ⋅ ,Bl

y ∖{J j+1}, ⋅ ⋅ ⋅ ,Bl
nl
}

on Ml by moving job J j+1 from Bl
y to Bl

x, and we get a new schedule π∗ = {π1, ⋅ ⋅ ⋅ , π ′l ,
⋅ ⋅ ⋅ , πm}. Since Pj ≤ Pj+1 ≤ Pj+2, we have that p(Bl

x∪{J j+1}) = p(Bl
x), p(Bl

y ∖{J j+1})≤
p(Bl

y).

Accordingly, the completion time of job J j+1 decreases from C(Bl
y) to C(Bl

x), while
the completion times of the other jobs do not increase, i.e., C j+1(π∗) < C j+1(π), and
Ci(π∗)≤Ci(π), for i = 1, ⋅ ⋅ ⋅ ,n, i ∕= j+1, obviously, w j+1C j+1(π∗)< w j+1C j+1(π), and
wiCi(π∗)≤ wiCi(π), for i = 1, ⋅ ⋅ ⋅ ,n, i ∕= j+1. This contradicts the optimal schedule π .

Case 1.2. x > y
We can get a new schedule π ′l = {Bl

1, ⋅ ⋅ ⋅ ,Bl
y ∪{J j}, ⋅ ⋅ ⋅ ,Bl

x ∖{J j}, ⋅ ⋅ ⋅ ,Bl
nl
} on Ml by

moving job J j from Bl
x to Bl

y, and we get a new schedule π∗ = {π1, ⋅ ⋅ ⋅ ,π ′l , ⋅ ⋅ ⋅ ,πm}. Since
p j ≤ p j+1 ≤ p j+2, we have that p(Bl

y ∪{J j}) = p(Bl
y), p(Bl

x ∖{J j}) = p(Bl
x).

Consequently, C j(π∗)<C j(π), and Ci(π∗) =Ci(π), for i = 1, ⋅ ⋅ ⋅ ,n, i ∕= j. A contra-
diction.

Case 2. l1 ∕= l2, that is, Bl1
x and Bl2

y are on different machines, w.l.o.g let 1 ≤ l1 < l2 ≤
m.

We distinguish three cases:

Case 2.1. C(Bl1
x)<C(Bl2

y)

We get π ′l1 = {Bl1
1 , ⋅ ⋅ ⋅ ,B

l1
x ∪{J j+1}, ⋅ ⋅ ⋅ ,Bl1

nl1
}, π ′l2 = {Bl2

1 , ⋅ ⋅ ⋅ ,B
l2
y ∖{J j+1}, ⋅ ⋅ ⋅ ,Bl2

nl2
}

by moving job J j+1 from Bl2
y to Bl1

x , and we get a new schedule

π∗ = {π1, ⋅ ⋅ ⋅ ,π ′l1 , ⋅ ⋅ ⋅ ,π ′l2 , ⋅ ⋅ ⋅ ,πm}.

Since p j ≤ p j+1 ≤ p j+2, we have that p(Bl1
x ∪{J j+1}) = p(Bl1

x), p(Bl2
y ∖{J j+1})≤ p(Bl2

y).

404 The 8th International Symposium on Operations Research and Its Applications

Consequently, the completion time of job J j+1 decrease from C(Bl2
y) to C(Bl1

x), while
the completion times of other jobs do not increase, i.e., C j+1(π∗)<C j+1(π), and Ci(π∗)≤
Ci(π), for i = 1, ⋅ ⋅ ⋅ ,n, i ∕= j+1. A contradiction.

Case 2.2. C(Bl1
x)>C(Bl2

y)

We get π ′l1 = {Bl1
1 , ⋅ ⋅ ⋅ ,B

l1
x ∖{J j}, ⋅ ⋅ ⋅ ,Bl1

nl1
}, π ′l2 = {Bl2

1 , ⋅ ⋅ ⋅ ,B
l2
y ∪{J j}, ⋅ ⋅ ⋅ ,Bl2

nl2
}

by moving job J j from Bl1
x to Bl2

y , and we get a new schedule

π∗ = {π1, ⋅ ⋅ ⋅ ,π ′l1 , ⋅ ⋅ ⋅ ,π ′l2 , ⋅ ⋅ ⋅ ,πm}.

Since p j ≤ p j+1 ≤ p j+2, we have that p(Bl1
x ∖{J j}) = p(Bl1

x), p(Bl2
y ∪{J j}) = p(Bl2

y).
Consequently, C j(π∗)<C j(π), and Ci(π∗) =Ci(π), for i = 1, ⋅ ⋅ ⋅ ,n, i ∕= j. A contra-

diction.
Case 2.3. C(Bl1

x) =C(Bl2
y)

We get π ′l1 = {Bl1
1 , ⋅ ⋅ ⋅ ,B

l1
x ∖{J j}, ⋅ ⋅ ⋅ ,Bl1

nl1
}, π ′l2 = {Bl2

1 , ⋅ ⋅ ⋅ ,B
l2
y ∪{J j}, ⋅ ⋅ ⋅ ,Bl2

nl2
}

by moving job J j from Bl1
x to Bl2

y , and we get a new schedule

π∗ = {π1, ⋅ ⋅ ⋅ ,π ′l1 , ⋅ ⋅ ⋅ ,π ′l2 , ⋅ ⋅ ⋅ ,πm}.

Since p j ≤ p j+1 ≤ p j+2, we have that p(Bl1
x ∖{J j}) = p(Bl1

x), p(Bl2
y ∪{J j}) = p(Bl2

y).
Consequently, the completion times of all jobs are unchanged, then the objective value

is unchanged.
A finite number of repetitions of this procedure yields an optimal schedule of the

required form.
Now, the conclusion of (i) holds.
(ii) For the subschedule π l = {Bl

1, ⋅ ⋅ ⋅ ,Bl
x, ⋅ ⋅ ⋅ ,Bl

y, ⋅ ⋅ ⋅ ,Bl
nl
} on machine Ml (l = 1, ⋅ ⋅ ⋅ ,

m) in π , to prove P(Bl
1)< ⋅ ⋅ ⋅< P(Bl

x)< ⋅ ⋅ ⋅< P(Bl
y)< ⋅ ⋅ ⋅< P(Bl

nl
), assume the opposite,

w.l.o.g suppose that P(Bl
x)≥ P(Bl

y), from (i), we know that all the processing time of jobs
in batch Bl

x are not smaller than those of jobs in Bl
y. If we move all the jobs in batch Bl

y to
batch Bl

x, then the objective function value is strictly decreased, which contradicting the
optimal schedule π . So, the conclusion of (ii) holds.

This completes the proof of Theorem 1.

3.2 Algorithm and Example
Based on Theorem 1, we present an O(nm+2) time backward dynamic programming

algorithm in this subsection.
Let Fj(∣J j

1 ∣, . . . , ∣J
j
m∣) be the minimum total weighted completion time in SPT order

schedule on the number of m uniform machines with unbounded batch, and each machine
Ml (l = 1, ⋅ ⋅ ⋅ ,m) contains the job subset J j

l among {J j,J j+1, ⋅ ⋅ ⋅ ,Jn}. Where
∪m

l=1 J j
l =

{J j,J j+1, ⋅ ⋅ ⋅ ,Jn}, and ∑m
l=1 ∣J

j
l ∣= n− j+1. Where ∣J j

l ∣ denotes the cardinality of set J j
l ,

i.e., ∣J j
l ∣ is the total number of jobs on machine Ml among {J j,J j+1, ⋅ ⋅ ⋅ ,Jn}. Here, we

must use the cardinality ∣J j
l ∣ to denote the number of jobs instead of n j

l , which is a natural
number, because, when we calculate the objective in the iteration, we would consider the
weights of jobs in set J j

l .

Minimizing Total Weighted Completion Time on Uniform Machines 405

Processing the first batch in the schedule starts at time zero on machine Ml (l =
1, ⋅ ⋅ ⋅ ,m). Whenever a new batch is added to the beginning of this schedule and as-
signed to Ml , there is a corresponding delay to the processing of all those batches on that
machine. Suppose that a batch {J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1}, which has processing time pk−1, is
inserted at the start of the schedule and assigned to Ml .

For jobs {Jk, ⋅ ⋅ ⋅ ,Jn}, the total weighted completion time of some of them which
scheduled on Ml increases by

pk−1 ∑Ji∈Jk
l

wi

sl
,

where Jk
l is the job set of the schedule among {Jk, ⋅ ⋅ ⋅ ,Jn} on Ml , while the total weighted

completion time of {J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1} is
pk−1 ∑k−1

i= j wi

sl
.

As Jk
l
∪{J j, ⋅ ⋅ ⋅ ,Jk−1}= J j

l , thus, the overall increase in the total weighted completion
time is

pk−1 ∑Ji∈Jk
l

wi

sl
+

pk−1 ∑k−1
i= j wi

sl
=

pk−1 ∑Ji∈J j
l

wi

sl
.

A formal description of backward Dynamic Programming Algorithm is given bellow.
ALGORITHM DP(Dynamic Programming)
Step 1. Re-index all jobs according to the SPT order so that p1 ≤ ⋅⋅ ⋅ ≤ pn.
Step 2. Let Fn+1(∣ϕ ∣, . . . , ∣ϕ ∣) = 0. If (j; ∣J j

1 ∣, . . . , ∣J
j
m∣) ∕= (n+1; ∣ϕ ∣, . . . , ∣ϕ ∣),

then Fj(∣J j
1 ∣, . . . , ∣J

j
m∣) = ∞ . Let j = n.

Step 3. For each tuple (∣J j
1 ∣, . . . , ∣J

j
m∣) such that ∣J j

l ∣ ∈ {0,1, ⋅ ⋅ ⋅ ,n− j+1}, l = 1, ⋅ ⋅ ⋅ ,m ,
and ∑m

l=1 ∣J
j
l ∣= n− j+1,

∪m
l=1 J j

l = {J j, ⋅ ⋅ ⋅ ,Jn}. Compute the following

Fj(∣J j
1 ∣, . . . , ∣J j

m∣) = min j<k≤n+1{Fk(∣J j
1 ∣, . . . ,(∣J

j
l ∣− ∣{J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1}∣), . . . , ∣J j

m∣)

+
pk−1 ∑Ji∈J j

l
wi

sl
: 1 ≤ l ≤ m}.

If j = 1, go to step 4, otherwise , let j = j−1, repeat step 3.
Step 4. Define

F∗ =min{F1(∣J1
1 ∣, . . . , ∣J1

m∣) : ∣J1
l ∣ ∈ {0,1, ⋅ ⋅ ⋅ ,n}, l = 1, ⋅ ⋅ ⋅ ,m,and

m

∑
l=1

∣J1
l ∣= n,

m∪

l=1

J1
l = J},

which is the optimal value , then to find the optimal schedule by backtracking.
Remarks:
1. The time complexity of ALGORITHM DP is O(nm+2), and our problem is poly-

nomially solvable if the number of machines m is constant.
2. In step 3, if

Fj(∣J j
1 ∣, . . . , ∣J j

m∣) = Fk(∣J j
1 ∣, . . . ,(∣J

j
l ∣− ∣{J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1}∣), . . . , ∣J j

m∣)+
pk−1 ∑Ji∈J j

l
wi

sl
,

406 The 8th International Symposium on Operations Research and Its Applications

then batch {J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1} is inserted from the start on machine Ml .
Example: Consider the two-machine problem with the following dates.
J = {J1,J2,J3} with processing times p1 = 2, p2 = 4, p3 = 6 and weights w1 = 3,w2 =

1,w3 = 5.
M = {M1,M2}, and the speeds are s1 = 1 and s2 = 2.
The order of jobs is already in SPT order. If we use ALGORITHM DP, we can get

the schedule: J1 is assigned to M1, J2 and J3 are in one batch assigned to M2, and the
objective function value is F∗ = ∑w jC j = 24, which is the optimal value.

4 The Special Case of w j = 1 for j = 1, ...,n
In this section, we discuss the special case of w j = 1 for j = 1, ⋅ ⋅ ⋅ ,n, i.e., the problem

Qm∣B(∞)∣∑C j. Theorem 1 is valid for the special case.

In section 3, if we replace the cardinality ∣J j
l ∣ by a natural number n j

l for l = 1, ⋅ ⋅ ⋅ ,m
and j = 1, ⋅ ⋅ ⋅ ,n, we can get the similar dynamic programming algorithm for the problem
Qm∣B(∞)∣∑C j. We only recount it in sketch:

Let
Fj(∣J j

1 ∣, . . . , ∣J j
m∣) = Fj(n

j
1, . . . ,n

j
m).

Suppose that a batch {J j,J j+1, ⋅ ⋅ ⋅ ,Jk−1} which has processing time pk−1 is inserted at
the start of the schedule and assigned to Ml . The overall increase in the total completion
time is

(k− j+nk
l)pk−1

sl
=

n j
l pk−1

sl
.

The iterative formula is

Fj(n
j
1, . . . ,n

j
m) = min j<k≤n+1{Fk(n

j
1, . . . ,n

j
l − (k− j), . . . ,n j

m)+
n j

l pk−1

sl
: 1 ≤ l ≤ m}.

Example: Consider the two-machine problem with the following dates.
J = {J1,J2,J3,J4} with processing times p1 = 1, p2 = 2, p3 = 4, p4 = 6 .
M = {M1,M2}, and the speeds are s1 = 1 and s2 = 2.
The schedule is that J2 is assigned to M1, J1 as a batch, is assigned to M2 from the start,

J2 and J3 are in one batch assigned to M2 after J1. The optimal objective function value is
F∗ = min{F1(4,0),F1(0,4),F1(2,2),F1(1,3),F1(3,1)}= min{20,10,10,9.5,13}= 9.5.

5 Conclusion
In this paper, we present a backward dynamic programming algorithm for

Qm∣B(∞)∣∑w jC j, and it is polynomially solvable if the number of machine m is constant.
An interesting problem for further research is Qm∣r j,B(∞)∣∑w jC j.

References
[1] C.-Y. Lee, R. Uzsoy and L.A. Martin-Vega, Efficient algorithms for scheduling semiconductor

burn-in operations, Operations Research, 40, 1992, 764-775.

Minimizing Total Weighted Completion Time on Uniform Machines 407

[2] S. Webster and K.R. Baker, Scheduling groups of jobs on a single machine, Operations Re-
search, 43, 1995, 692-703.

[3] C.N. Potts and M.Y. Kovalyov, Scheduling with batching: A review, European Journal of
Operational Research, 120, 2000, 228-249.

[4] P. Brucker, A. Gladky, H. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, and S. van
de Velde, Scheduling a batching machine, J Sched, 1, 1998, 31-54.

[5] Xiaotie Deng and Yuzhong Zhang, Minimizing mean response time in batch processing sys-
tem, Lecture Notes in Computer Science, 1627, 1999, 231-240.

[6] Shuguang Li, Guojun Li and Hao Zhao, A linear time approximation scheme for minimizing
total weighted completion time of unbounded batch scheduling, Operations Research Trans-
actions, 8(4), 2004, 27-32.

[7] Shuguang Li, Guojun Li and Xiuhong Wang, Minimizing total weighted completion time on
parallel unbounded batch machines, Journal of Software, 2006, 17, 2063-2068.

[8] Bo Chen, Xiaotie Deng and Wenan Zang, On-line scheduling a batch processing system to
minimize total weighted job completion time, Journal of Combinatorial Optimization, 8,
2004, 85-95.

[9] Yuzhong Zhang and Zhigang Cao, Parallel batch scheduling: A Survey, Advances of mathe-
matics, 37, 2008, 392-408.

[10] T.C.E. Cheng, Z.-L. Chen, M.Y. Kovalyov and B.M.T. Lin, Parallel-machine batching and
scheduling to minimize total completion time, IIE Transactions, 28, 1996, 953-956.

[11] R.L. Graham, Lawler, J. K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approxima-
tion in deterministic sequencing and scheduling: A survey, Ann Disc Math, 5, 1979, 287-326.

[12] Yuzhong Zhang, Chunsong Bai and Shouyang Wang, Duplicating and its applications in batch
scheduling, Lecture Notes in Operations Research, 5, 2005, 108-117.

408 The 8th International Symposium on Operations Research and Its Applications

