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Abstract The lower and upper bounds on the decycling number of circular graph C(n,k) where
k ≤ ⌊ n

2⌋ of order n are obtained. The explicit expressions of that of some classes of graphs are
presented.
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1 Introduction: the decycling number of graphs
It is well known that the cycle rank of a graph is the minimum number of edges

whose removal eliminates all cycles in the graph. The parameter has a simple expression.
That is, if G is a graph with p vertices, q edges and k components, then the cycle rank
β (G) = q− p+ k. It is an important invariant to characterize a graph. The corresponding
problem of removing vertices does not have such a simple solution. It is quite difficult
even for some elementary graph.

Let G(V,E) be a graph. If S ⊆ V (G) and G− S is acyclic, then S is said to be a
decycling set of G. The minimum order of decycling set is called the decycling number
of G and is denoted by ▽(G). A decycling set of this order is called a ▽-set. It was
shown[4] that determining the decycling number of an arbitrary graph is NP-complete.
The results on the decycling number of several classes of simply defined graphs can be
seen in [1-2,7].

For the basic terminologies and notations, we refer the reader to [3].

2 The decycling number of circular graph
Let n and l be two positive integers with n ≥ 2l. For any two numbers i, j where

1 ≤ i, j ≤ n, define function

χ(i− j) =
{

∣i− j∣, if ∣i− j∣ ≤ n
2

n−∣i− j∣, otherwise.

A circular graph G = C(n, l) of order n is one spanned by a n-circuit Cn = (1,2, . . . ,n)
together with the chords (i, j) ∈ E(G) iff χ( j− i) = l (l > 1). Circular graphs are very
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useful for their own sake. In literature [5,6], the crossing number and some topological
results of circular graphs were shown. In this paper the decycling number of circular
graph is discussed.

Theorem 1 ⌈ n+1
3 ⌉ ≤▽(C(n, l))≤ ⌈ n

2⌉ where n > 2l and l > 1.
Proof. It is easy to see that graph C(n, l) is 4-regular. Firstly we prove that ▽(C(n, l))

≥ ⌈ n+1
3 ⌉. Suppose S is a decycling set of graph C(n, l) with order m. To make graph

C(n, l)−S acyclic, at most n−m−1 edges are allowed. That is, at least 2n−(n−m−1) =
n+m+1 edges should be removed. Let E(S)= {e=(u,v) ∣ u or v∈ S}. Then ∣E(S)∣ ≤ 4m
and ∣E(S)∣= 4m if and only if S is an independent set. Then 4m ≥ n+m+1 is obtained.
It follows that m ≥ ⌈ n+1

3 ⌉.
Then we prove that ▽(C(n, l))≤ ⌈ n

2⌉.
Case 1 n is even and l is odd. Let S = {x ∣ x is even, x ≤ n}. ∀y ∈ V (C(n, l))−S, if

(y,z) ∈ E(C(n, l)), z is even. So z ∈ S. That is to say that C(n, l)−S is a set of n
2 isolated

vertices. So ▽(C(n, l))≤ n
2 .

Case 2 n is even and l is even. If n = 4k let

S = {x ∣ x is even and x ≤ n
2
}∪{y ∣ y is odd and

n
2
< x < n}.

If n = 4k+2 let

S = {x ∣ x is even and x <
n
2
}∪{y ∣ y is odd and

n
2
< x < n}∪{n

2
+1}.

All of the edges (i, i+1), i = 1, 2, ⋅ ⋅ ⋅ , n−1, are not in G−S. Now we prove that S is a
decycling set of G. Assume C is a cycle in G−S and C does not contain the edge (1,n),
then it is composed of the edges (i, i+ l). Without loss of generality, we can suppose that
C = {i, i+ l, i+2l, ⋅ ⋅ ⋅ , i+ xl} where the numbers are taken modulo n and i < n

2 . We can
see that i+xl+ l−n = i. Then i is odd, i+xl is odd too but i+xl belongs to the set S. So
such a circuit does not exist.

Assume C is a cycle in G− S and C contains the edge (1,n), since 1+ n− l ∈ S,
n+ l ≡ l ∈ S, the circuit C is {1+ xl, ⋅ ⋅ ⋅ ,1+ 2l,1+ l,1,n,n− l,n− 2l, ⋅ ⋅ ⋅ ,n− yl} and
1+ xl + l ≡ n− yl which is impossible since 1+(x+1)l is odd and n− yl is even. Then
graph C(n, l)−S is acyclic. So ▽(C(n, l))≤ ⌈ n

2⌉.
Case 3 n is odd and l is odd. Let S = {x ∣ x is even, x ≤ n}∪{n}. In graph C(n, l)−S,

given an odd number y (l ≤ y < n− l), it is an isolated vertex. For an odd number y
(0 < y < l), it is adjacent to only one vertex n+ y− l. That is, it is an articulate vertex.
For the same reason, the vertex y (n− l < y < n) is adjacent to only one vertex y+ l −n.
Graph C(n, l)−S is acyclic. So ▽(C(n, l))≤ ⌊ n

2⌋+1 = ⌈ n
2⌉.

Case 4 n is odd and l is even. Let S = {x ∣ x is even, x ≤ n} ∪ {n}. For any y ∈
V (C(n, l))− S, at least two edges of Ey are removed. If there is a circuit C in graph
(C(n, l))−S, C must be composed of such edges as (i, i+ l) where the numbers are modulo
n. Such an edge (x,y) (n− l ≤ x≤ n, 0≤ y≤ l) is inevitable which contradicts the fact that
x and y should be odd at the same time. So C(n, l)−S is acyclic. Then ▽(C(n, l))≤ ⌈ n

2⌉.

From the proof of this theorem the following corollary is direct:
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Corollary 2 Suppose n ≡ 2 (mod 3) and ▽(C(n, l)) = ∣S∣= n+1
3 for certain l where

S is a decycling set and n ∕= 2l. Then the decycling set is an independent set and the graph
G−S is a tree(connected and acyclic).

Lemma 3[2] If G and H are homomorphic graphs, then ▽(G) = ▽(H).
In the following paper, we determine the explicit expression of ▽-set for certain cir-

cular graphs. At first if n = 2l then graph C(n, l) is 3-regular. We discuss the decycling
set of C(n, l).

Lemma 4 ▽(C(n, l))≥ ⌈ l+1
2 ⌉ where n = 2l.

Proof. Suppose S is a decycling set with ∣S∣ = m of graph C(n, l). The size of graph
C(n, l)−S is at most l−m−1. That is to say, at least l+m+1 edges should be eliminated.
Then we get 3m ≥ l +m+1 which follows that m ≥ ⌈ l+1

2 ⌉.

Theorem 5 ▽(C(n, l)) = ⌈ l+1
2 ⌉ where l ≥ 2 and n = 2l.

Proof. Easily to see that graph C(4,2) is homomorphic to the complete graph K4.
From [6], we know that ▽(C(4,2)) = 2.

Suppose A is a set of edges of graph G. Then ▽(G−A)≤▽(G). For any edge (i, j)∈
E(C(n, l)) where ∣i− j∣ ∕= 1 graph C(n,n)−(i, j) is homomorphic to graph C(n−2, l−1).
From Lemma 3, ▽(C(n−2, l −1))≤▽(C(n, l))≤▽(C(n+2, l +1)).

By induction on the number l. When l = 3, the circular graph C(6,3) is isomorphic
to K3,3, so ▽(C(6,3)) = 2 = ⌈ 3+1

2 ⌉. If l = 4, from Lemma 4, ▽(C(8,4)) ≥ 3. Suppose
S = {1,3,5}, C(8,4) is acyclic. Then ▽(C(8,4)) = 3 = ⌈ 4+1

2 ⌉.

Suppose when nl = k (k is even) this theorem holds. We can get that k
2 +1≤▽(C(2k+

2,k+1)). Let S = {i ∣i is odd, and i ≤ k+1}. The induced graph C(2k+2,k+1)−S is
a tree. So ▽(C(2k+2,k+1)) = k

2 +1 = ⌈ k+2
2 ⌉.

Suppose when n = k (k is odd) this theorem holds. It is got that k−1
2 +1 ≤▽(C(2k+

2,k+ 1)). On the other hand, from Lemma 4 ▽(C(2k+ 2,k+ 1)) ≥ k−1
2 + 2. Let S =

{i ∣i is odd, and i ≤ k+1}. The induced graph C(2k+2,k+1)−S is a tree. So ▽(C(2k+
2,k+1)) = k+1

2 +1 = ⌈ k+2
2 ⌉.

This theorem follows.
Most circular graphs C(n, l) is 4-regular. Then we cinsider 4-regular circulat graph. If

= 2 we have the following result:
Theorem 6

▽(C(n,2)) =
{

⌈ n+1
3 ⌉+1, if n ≡ 2,5 mod 6
⌈ n+1

3 ⌉, otherwise.

where n ≥ 5.
Proof. When n = 5, C(5,2) is isomorphic to K5. And ▽(C(5,2)) = 3 = ⌈ 5+1

3 ⌉+1.
Then we prove the case when n ≥ 6. First from Theorem 1, we know ▽(C(n,2)) ≥

⌈ n+1
3 ⌉.
Case 1 n = 6k where k is a positive integer. On one hand, ▽(C(6k,2)) ≥ 2k + 1.

Suppose S = {3i ∣ i = 1,2 . . . ,2k}∪{1}. Easy to see that C(6k,2)−S is a path of length
4k−2. Then ▽(C(6k,2)) = 2k+1 = ⌈ n+1

3 ⌉.
Case 2 n = 6k+ 2 where k is a positive integer. It is easy to see that ▽(C(6k,2)) ≥

2k+ 1. We say that ▽(C(6k+ 2,2)) ≥ 2k+ 2. Otherwise suppose that S is a decycling
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set with order 2k+ 1 of graph C(6k+ 2,2). From Corollary 2, ∣E(S)∣ = 4k+ 4. Select
any 2k+1 vertices from 6k+2 vertices. Since 6k+2

2k+1 < 3, the occurrence of such pairs of
vertices as i and i+1 or i and i+2 is inevitable. So ∣E(S)∣= 4k+4 is impossible. Then we

get that ▽(C(6k,2))≥ 2k+2. On the other hand, let S =
2k∪

i=1
{3i}∪{6k+1,6k+2}. The

graph C(6k,2)−S is a path of length 4k−1. Then ▽(C(6k+2,2)) = 2k+2= ⌈ 6k+3
3 ⌉+1.

Case 3 n= 6k+4 where k is a positive integer. On one hand, ▽(C(6k+4,2))≥ 2k+2.

On the other hand let S =
2k+1∪
i=1

{3i}∪{6k+4}. The graph C(6k,2)−S is a path of length

4k+1. So ▽(C(6k+4,2)) = 2k+2 = ⌈ 6k+5
3 ⌉.

Case 4 n = 6k+1 where k is a positive integer. From Theorem 1, ▽(C(6k+1,2))≥
2k+1. Then let S =

2k∪
i=1

{3i}∪{6k+1}. One can see that graph C(6k+1,2)−S is a path

of length 4k−1. So ▽(C(6k+1,2)) = 2k+1 = ⌈ 6k+2
3 ⌉.

Case 5 n = 6k + 3 where k is a positive integer. On one hand, Ffom Theorem 1

▽(C(6k+ 3,2)) ≥ 2k+ 2. On the other hand let S =
2k+1∪
i=1

{3i}∪{1}. The graph C(6k+

3,2)−S is a path of length 4k. So ▽(C(6k+3,2)) = 2k+2 = ⌈ 6k+4
3 ⌉.

Case 6 n = 6k + 5 where k is a positive integer. On one hand, ▽(C(6k + 5,2)) ≥
2k+2. In graph C(6k+5,2), any 2k+2 vertices can be incident to at most 8k+7 edges
since the occurrence of such pair of vertices as (i, i+ 1) or (i, i+ 2) is inescapable. So

▽(C(6k+5,2))≥ 2k+3. Let S =
2k+1∪
i=1

{3i}∪{6k+4,6k+5}. The graph C(6k+5,2)−S

is acyclic. Then ▽(C(6k+5,2)) = 2k+3 = ⌈ 6k+6
3 ⌉+1.

This theorem is found.
Theorem 7

▽(C(n,3)) =
{

⌈ n+1
3 ⌉+1, if n = 3k+2 and k is odd,
⌈ n+1

3 ⌉, otherwise.

where n ≥ 7.
Proof First from Theorem 1, it is known that ▽(C(n,3))≥ ⌈ n+1

3 ⌉.
Case 1 n= 3k where k is a positive integer. Suppose that S = {at ,n−1} where a1 = 1,

at < n and

at+1 =

{
at +2, if t is odd,
at +4, if t is even.

There is no cycle in graph C(3k,3)−S, so ▽(C(n,3)) = ⌈ n+1
3 ⌉ when n = 3k.

Case 2 n = 3k+ 1 where k is a positive integer. Suppose that S = {at ,n− 1} where
a1 = 1, at < n and

at+1 =

{
at +2, if t is odd,
at +4, if t is even.

The graph C(3k+1,3)−{at} when k is odd is acyclic, so is graph C(3k+1,3)−S when
k is even. Summarizing above, it is obtained that ▽(C(n,3)) = ⌈ n+1

3 ⌉ when n = 3k+1.
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Case 3 n = 3k+ 2 where k is a positive even integer. Suppose that S = {at} where
a1 = 1, at < n and

at+1 =

{
at +2, if t is odd,
at +4, if t is even.

Graph C(3k+2)−S is acyclic. So ▽(C(n,3)) = ⌈ n+1
3 ⌉ when n = 3k+2.

Case 4 n = 3k+2 where k is a positive odd integer. It can be seen that n = 6× k−1
2 +

5 = 6m+ 5. We prove that ▽(C(n,3)) ∕= ⌈ n+1
3 ⌉ = 2m+ 2. By contradiction. Suppose

S is a decycling set of C(n,3) and ∣S∣ = 2m+ 2. Make the numbers in S with ascending
order, that is, S = {b1,b2, ⋅ ⋅ ⋅ ,b∣S∣} where b1 < b2 < ⋅ ⋅ ⋅< b∣S∣. Since S is a decycling set,
then ∣E(S)∣= 8m+8. We know S is an independent set. For any two vertices bi and bi+1
in S, χ(bi+1 − bi) ∕= 1 or 3 and χ(bi+1 − bi) ≤ 4. Suppose there are x pairs of numbers
(bi,bi+1) ∈ S such that χ(bb+1 − bi) = 2 and y pairs of numbers (bi,bi+1) ∈ S such that
χ(bi+1 − bi) = 4. Then two equation are derived: x+ y = 2m+ 2 (the number of the
vertices whose removal is necessary) and x+ 3y = 4m+ 3. It follows that 2y = 2m+ 1.
This is impossible. So ▽(C(n,3)) ∕= ⌈ n+1

3 ⌉= 2m+2. That is ▽(C(6m+5,3))≥ 2m+3.
Let S = {at ,n−1} where a1 = 1, at < n and

at+1 =

{
at +2, if t is odd,
at +4, if t is even.

The graph C(3k,2)−S is acyclic when k is a positive odd integer, so ▽(C(3k+2,3)) =
⌈ 3k+3

3 ⌉+1 = k+2.
This theorem is found.
To obtain more results on decycling number, we introduce two operators. They are

used in the following proof.
Given a labeled circular graph G with order n, suppose S is a set of vertices S =

{i1, i2, ⋅ ⋅ ⋅ , il}. Define two operators δ and δ ′ such that δS = {i j − i j−1−1, i1− il −1 ∣ j =
2,3, ⋅ ⋅ ⋅ , l} and δ ′S = {i j − i j−1 − 1∣ j = 2,3, ⋅ ⋅ ⋅ , l} where the elements read modulo n.
From sets δS = {p1, p2, ⋅ ⋅ ⋅ , pl} or δ ′S = {p1, p2, ⋅ ⋅ ⋅ pl−1} it is able to get the set S too.
But the set S is different according to the choice of number i1.

For example, suppose G is the circular graph C(17,8) and S = {3,6,7,9,10, 15,17}.
Then δS = {2,0,1,0,4,1,2} and δ ′S = {2,0,1,0,4,1}. If δS = {2,1,1,0,3,1,2} and
suppose i1 = 1 the set S could be {1,4,6,8,9,13,15}.

Theorem 8

▽(C(n,4)) =
{

⌈ n+1
3 ⌉+1, n = 3k+2 and k is a positive integer,
⌈ n+1

3 ⌉, otherwise.

where n ≥ 9.
Proof From Theorem 1, we know that ▽(C(n,4))≥ ⌈ n+1

3 ⌉. To get the lower bound,
three cases are divided.

Case 1 n = 3k where k is a positive integer. Let S0 = {3i ∣ i = 1,2, ⋅ ⋅ ⋅ ,k}. In graph
C(3k,4)− S0, for the vertex v = 3i+ 1, two edges (3i+ 1,3i) and (3i+ 1,3i− 3) are
removed. For the vertex v = 3i+ 2, the edges (3i+ 2,3i+ 3) and (3i+ 2,3i+ 6) are
removed. So the graph C(3k,4)−S0 is a cycle of length 2k. Removing any vertex of graph
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C(3k,4)− S0, without loss of generality, suppose the vertex 1 is removed, the resultant
graph is acyclic. So S = S0 ∪{1} is a ▽-set. Then ▽(C(3k,4)) = k+1 = ⌈ n+1

3 ⌉.
Case 2 n = 3k+ 1 where k is a positive integer. Let S = {3i ∣ i = 1,2, ⋅ ⋅ ⋅ ,k}∪{1}.

In graph C(3k,4)−S, for the vertex v = 3i+1 (1 ≤ i < k−1), it is incident to two edges
(3i+1,3i+2) and (3i+1,3i+5). For the vertex v = 3i+2 (i ≥ 2), it is incident to two
edges (3i+2,3i+1) and (3i+2,3(i−1)+1). The vertices 2,n,5,n−3 are articulated and
the edges that they are incident with are (2,n−2), (n,4), (5,1) and (n−3,1) respectively.
So the graph C(3k,4)−S is acyclic. Then ▽(C(3k+1,4)) = k+1 = ⌈ n+1

3 ⌉.
Case 3 n = 3k+2 where k is a positive integer. First we say that ▽(C(3k+2,4)) ∕=

k+ 1. Otherwise suppose that S is a decycling set of k+ 1 vertices. From Corollary 2,
∣E(S)∣= 4k+4. Assume the numbers in S are sorted with ascending order. For any vertex
a and its successor b in S , χ(a− b) = 2, χ(a− b) = 3 or χ(a− b) = 5. Suppose there
are x pairs of numbers (a,b) such that χ(a− b) = 2, y pairs of numbers (c,d) such that
χ(c− d) = 3 and z pairs of numbers (e, f ) such that χ(e− f ) = 5. Two equations are
followed that x+ y+ z = k+1 and x+2y+4z = 2k+1.

If z = 0 then y = k and x = 1. Suppose i, i+2 are two numbers of S. Then the vertex
i+1 in graph C(n,4)−S is an isolated vertex which contradicts Corollary 2.

Then we have z ∕= 0. Suppose the vertices i, i+ 5 ∈ S and the vertices i+ 1, i+ 2, i+
3, i+ 4 ∕∈ S. One can see that i+ 6 and i+ 9 ∕∈ S since set S is an independent set. The
vertex i+7 ∈ S because set S is a decycling set. And it forces vertex i+8 ∕∈ S. The vertex
i+ 10 ∈ S otherwise a circuit {i+ 2, i+ 3, i+ 4, i+ 8, i+ 9, i+ 10, i+ 6} appears which
contradicts that set S is a decycling set. Then the vertices i+11 and i+14 ∕∈ S. In order
to get an acyclic graph, one of the vertices i+12, i+13 should be removed.

If the vertex i+ 12 ∈ S one can see that the vertices i+ 13, i+ 14, i+ 15, i+ 16 ∕∈ S.
Another pair of numbers a,b ∈ S such that χ(a− b) = 5 are obtained. That is to say a
sequence T1 with δ ′T1 = {4,1,2,1} is available.

If the vertex i+13 ∈ S one can obtain a sequence T2 with δ ′T2 = {4,1,2,2,2, ⋅ ⋅ ⋅ ,1}.
The difference of T1 and T2 lies in the number of pairs (a,b) with χ(a−b) = 2. What-

ever the sequence in set S is, the order of the graph is a multiple of 3 which contradicts
that n = 3k+2.

In the proof of the case z ∕= 0, n ≥ 12. If n = 11, we know z ∕= 0. Otherwise suppose
(1,6) ∈ S, a cycle {3,4,11,10} occurs.

Summarizing above one know that ▽(C(3k+ 2,4)) ≥ k+ 2. Suppose S = {3i ∣ i =
1,2, ⋅ ⋅ ⋅ ,k}∪{1,n}. The graph C(n,4)−S is acyclic. Then ▽(C(3k+2,4)) = k+2.

Theorem 9 Suppose n = 3k, l = 3m − 1 and (k,m) = 1 where k ≥ 3m. Then
▽(C(n, l)) = k+1 = ⌈ n+1

3 ⌉.
Proof. At first let S0 = {3i ∣ i = 1,2, ⋅ ⋅ ⋅ ,k}. For any vertex 3i+1, 3i+1+ l = 3(i+

m)∈ S0, then dG−S0(3i+1)≤ 2. And 3i+1− l = 3(i−m)+2 ∕∈ S0, then dG−S0(3i+1) =
2. For the vertex 3i + 2, dG−S0(3i + 2) = 2 since 3i + 2 + l = 3(i + m) + 1 ∕∈ S0 and
3i+2− l = 3(i−m+1) ∈ S0 then dG−S0(3i+2) = 2.

Now we prove that G− S0 is a circuit but not the disjoint union of some circuits. It
suffices to prove that the set A = B = {1,4,7,10 ⋅ ⋅ ⋅ ,n− 2} where A = {1,3m+ 1,6m+
1,9m+1 ⋅ ⋅ ⋅} and the elements are modulo n.

In set A, suppose there are two elements k1 × 3m+ 1 ≡ k2 × 3m+ 1. Without loss
of generality we can assume that k1 > k2. There exists a positive number x such that
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k1 ×3m+ 1 = k2 × 3m+1+ x×3k which follows that (k1 − k2)m = xk. The left can be
divided by m, so xk is a multiple of m. On the other hand, 1 ≤ ∣k1 −k2∣ ≤ k which follows
that xk

m ≤ k. Then we can get x ≤ m which contradicts that xk is a multiple of m. Then
every two elements in A are different.

Let S = S0 ∪{1}. The graph G−S is a path of length 2k−1.
Theorem 10 Suppose n = 3k, l = 3m − 1 and (k,m) = 2 where k ≥ 3m. Then

▽(C(n, l)) = k+1 = ⌈ n+1
3 ⌉.

Proof. At first let S0 = {3i ∣ i = 1,2, ⋅ ⋅ ⋅ ,k}. For any vertex 3i + 1, 3i + 1 + l =
3(i+m)∈ S0, then dG−S0(3i+1)≤ 2. And 3i+1− l = 3(i−m)+2 ∕∈ S0, then dG−S0(3i+
1) = 2. For the vertex 3i+ 2, dG−S0(3i+ 2) = 2 since 3i+ 2+ l = 3(i+m) + 1 ∕∈ S0
and 3i+ 2− l = 3(i−m+ 1) ∈ S0 then dG−S0(3i+ 2) = 2. Removing the vertices in
set S0, two circuits are obtained C1 = {1,2,2 + l,3 + l, ⋅ ⋅ ⋅ ,n − l,n − l + 1} and C2 =
{n− 1,n− 2, ⋅ ⋅ ⋅ , l − 1}. Let S = S0 −{n}+ {1,n− 1}. It can be verified that graph
C(n, l)−S is acyclic. So ▽(C(n, l)) = k+1.

From these theorems we know the lower bound in Theorem 1 is best possible since it
is reached.
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