The Eighth International Symposium on Operations Research and Its Applications (ISORA'09) Zhangjiajie, China, September 20–22, 2009 Copyright © 2009 ORSC & APORC, pp. 387–393

Decycling Number of Circular Graphs*

Erling Wei^{1,†} Yanpei Liu² Zhaoxiang Li³

¹Department of mathematics, Renmin University of China, Beijing 100872, China ²Department of mathematics, Beijing Jiaotong University, Beijing 100044, China ³Department of mathematics, Minzu University of China, Beijing 100081, China

Abstract The lower and upper bounds on the decycling number of circular graph C(n,k) where $k \leq \lfloor \frac{n}{2} \rfloor$ of order *n* are obtained. The explicit expressions of that of some classes of graphs are presented.

Keywords circular graph; decycling number; independent set

1 Introduction: the decycling number of graphs

It is well known that the cycle rank of a graph is the minimum number of edges whose removal eliminates all cycles in the graph. The parameter has a simple expression. That is, if *G* is a graph with *p* vertices, *q* edges and *k* components, then the cycle rank $\beta(G) = q - p + k$. It is an important invariant to characterize a graph. The corresponding problem of removing vertices does not have such a simple solution. It is quite difficult even for some elementary graph.

Let G(V,E) be a graph. If $S \subseteq V(G)$ and G - S is acyclic, then S is said to be a *decycling set* of G. The minimum order of decycling set is called the *decycling number* of G and is denoted by $\bigtriangledown(G)$. A decycling set of this order is called a \bigtriangledown -set. It was shown[4] that determining the decycling number of an arbitrary graph is NP-complete. The results on the decycling number of several classes of simply defined graphs can be seen in [1-2,7].

For the basic terminologies and notations, we refer the reader to [3].

2 The decycling number of circular graph

Let *n* and *l* be two positive integers with $n \ge 2l$. For any two numbers *i*, *j* where $1 \le i, j \le n$, define function

$$\chi(i-j) = \begin{cases} |i-j|, & \text{if } |i-j| \le \frac{n}{2} \\ n-|i-j|, & \text{otherwise.} \end{cases}$$

A circular graph G = C(n, l) of order *n* is one spanned by a *n*-circuit $C_n = (1, 2, ..., n)$ together with the chords $(i, j) \in E(G)$ iff $\chi(j - i) = l$ (l > 1). Circular graphs are very

^{*}Supported by the National Natural Sciences Foundation of China(No.10771225) and the project of "211" for Minzu University of China(021211030312)

[†]werling@ruc.edu.cn

useful for their own sake. In literature [5,6], the crossing number and some topological results of circular graphs were shown. In this paper the decycling number of circular graph is discussed.

Theorem 1 $\lceil \frac{n+1}{3} \rceil \leq \bigtriangledown (C(n,l)) \leq \lceil \frac{n}{2} \rceil$ where n > 2l and l > 1.

Proof. It is easy to see that graph C(n,l) is 4-regular. Firstly we prove that $\bigtriangledown (C(n,l)) \ge \lceil \frac{n+1}{3} \rceil$. Suppose *S* is a decycling set of graph C(n,l) with order *m*. To make graph C(n,l) - S acyclic, at most n-m-1 edges are allowed. That is, at least 2n - (n-m-1) = n+m+1 edges should be removed. Let $E(S) = \{e = (u,v) \mid u \text{ or } v \in S\}$. Then $|E(S)| \le 4m$ and |E(S)| = 4m if and only if *S* is an independent set. Then $4m \ge n+m+1$ is obtained. It follows that $m \ge \lceil \frac{n+1}{3} \rceil$.

Then we prove that $\bigtriangledown (C(n,l)) \leq \lceil \frac{n}{2} \rceil$.

Case 1 *n* is even and *l* is odd. Let $S = \{x \mid x \text{ is even}, x \le n\}$. $\forall y \in V(C(n,l)) - S$, if $(y,z) \in E(C(n,l)), z$ is even. So $z \in S$. That is to say that C(n,l) - S is a set of $\frac{n}{2}$ isolated vertices. So $\nabla(C(n,l)) \le \frac{n}{2}$.

Case 2 *n* is even and *l* is even. If n = 4k let

$$S = \{x \mid x \text{ is even and } x \le \frac{n}{2}\} \cup \{y \mid y \text{ is odd and } \frac{n}{2} < x < n\}.$$

If n = 4k + 2 let

$$S = \{x \mid x \text{ is even and } x < \frac{n}{2}\} \cup \{y \mid y \text{ is odd and } \frac{n}{2} < x < n\} \cup \{\frac{n}{2} + 1\}.$$

All of the edges (i, i+1), $i = 1, 2, \dots, n-1$, are not in G-S. Now we prove that S is a decycling set of G. Assume C is a cycle in G-S and C does not contain the edge (1, n), then it is composed of the edges (i, i+l). Without loss of generality, we can suppose that $C = \{i, i+l, i+2l, \dots, i+xl\}$ where the numbers are taken modulo n and $i < \frac{n}{2}$. We can see that i+xl+l-n=i. Then i is odd, i+xl is odd too but i+xl belongs to the set S. So such a circuit does not exist.

Assume *C* is a cycle in *G* – *S* and *C* contains the edge (1,n), since $1 + n - l \in S$, $n + l \equiv l \in S$, the circuit *C* is $\{1 + xl, \dots, 1 + 2l, 1 + l, 1, n, n - l, n - 2l, \dots, n - yl\}$ and $1 + xl + l \equiv n - yl$ which is impossible since 1 + (x + 1)l is odd and n - yl is even. Then graph C(n, l) - S is acyclic. So $\bigtriangledown (C(n, l)) \leq \lceil \frac{n}{2} \rceil$.

Case 3 *n* is odd and *l* is odd. Let $S = \{x \mid x \text{ is even}, x \le n\} \cup \{n\}$. In graph C(n, l) - S, given an odd number y ($l \le y < n - l$), it is an isolated vertex. For an odd number y (0 < y < l), it is adjacent to only one vertex n + y - l. That is, it is an articulate vertex. For the same reason, the vertex y (n - l < y < n) is adjacent to only one vertex y + l - n. Graph C(n, l) - S is acyclic. So $\nabla(C(n, l)) \le \lfloor \frac{n}{2} \rfloor + 1 = \lceil \frac{n}{2} \rceil$.

Case 4 *n* is odd and *l* is even. Let $S = \{x \mid x \text{ is even}, x \le n\} \cup \{n\}$. For any $y \in V(C(n,l)) - S$, at least two edges of E_y are removed. If there is a circuit *C* in graph (C(n,l)) - S, *C* must be composed of such edges as (i,i+l) where the numbers are modulo *n*. Such an edge (x,y) $(n-l \le x \le n, 0 \le y \le l)$ is inevitable which contradicts the fact that *x* and *y* should be odd at the same time. So C(n,l) - S is acyclic. Then $\nabla(C(n,l)) \le \lceil \frac{n}{2} \rceil$.

From the proof of this theorem the following corollary is direct:

Corollary 2 Suppose $n \equiv 2 \pmod{3}$ and $\bigtriangledown (C(n,l)) = |S| = \frac{n+1}{3}$ for certain l where S is a decycling set and $n \neq 2l$. Then the decycling set is an independent set and the graph G - S is a tree(connected and acyclic).

Lemma 3[2] If G and H are homomorphic graphs, then $\nabla(G) = \nabla(H)$.

In the following paper, we determine the explicit expression of ∇ -set for certain circular graphs. At first if n = 2l then graph C(n, l) is 3-regular. We discuss the decycling set of C(n, l).

Lemma 4 $\bigtriangledown (C(n,l)) \ge \lceil \frac{l+1}{2} \rceil$ where n = 2l.

Proof. Suppose *S* is a decycling set with |S| = m of graph C(n,l). The size of graph C(n,l) - S is at most l - m - 1. That is to say, at least l + m + 1 edges should be eliminated. Then we get $3m \ge l + m + 1$ which follows that $m \ge \lfloor \frac{l+1}{2} \rfloor$.

Theorem 5 $\bigtriangledown (C(n,l)) = \lceil \frac{l+1}{2} \rceil$ where $l \ge 2$ and n = 2l.

Proof. Easily to see that graph C(4,2) is homomorphic to the complete graph K_4 . From [6], we know that $\nabla(C(4,2)) = 2$.

Suppose *A* is a set of edges of graph *G*. Then $\bigtriangledown (G-A) \leq \bigtriangledown (G)$. For any edge $(i, j) \in E(C(n,l))$ where $|i-j| \neq 1$ graph C(n,n) - (i,j) is homomorphic to graph C(n-2,l-1). From Lemma 3, $\bigtriangledown (C(n-2,l-1)) \leq \bigtriangledown (C(n,l)) \leq \bigtriangledown (C(n+2,l+1))$.

By induction on the number *l*. When l = 3, the circular graph C(6,3) is isomorphic to $K_{3,3}$, so $\bigtriangledown (C(6,3)) = 2 = \lceil \frac{3+1}{2} \rceil$. If l = 4, from Lemma 4, $\bigtriangledown (C(8,4)) \ge 3$. Suppose $S = \{1,3,5\}, C(8,4)$ is acyclic. Then $\bigtriangledown (C(8,4)) = 3 = \lceil \frac{4+1}{2} \rceil$.

Suppose when nl = k (k is even) this theorem holds. We can get that $\frac{k}{2} + 1 \le \bigtriangledown (C(2k+2,k+1))$. Let $S = \{i \mid i \text{ is odd}, \text{ and } i \le k+1\}$. The induced graph C(2k+2,k+1) - S is a tree. So $\bigtriangledown (C(2k+2,k+1)) = \frac{k}{2} + 1 = \lceil \frac{k+2}{2} \rceil$.

Suppose when n = k (k is odd) this theorem holds. It is got that $\frac{k-1}{2} + 1 \le \bigtriangledown (C(2k+2,k+1))$. On the other hand, from Lemma 4 $\bigtriangledown (C(2k+2,k+1)) \ge \frac{k-1}{2} + 2$. Let $S = \{i \mid i \text{ is odd, and } i \le k+1\}$. The induced graph C(2k+2,k+1) - S is a tree. So $\bigtriangledown (C(2k+2,k+1)) \ge \frac{k+1}{2} + 1 = \lceil \frac{k+2}{2} \rceil$.

This theorem follows.

Most circular graphs C(n, l) is 4-regular. Then we cinsider 4-regular circulat graph. If = 2 we have the following result:

Theorem 6

$$\nabla(C(n,2)) = \begin{cases} \lceil \frac{n+1}{3} \rceil + 1, & \text{if } n \equiv 2,5 \mod 6\\ \lceil \frac{n+1}{3} \rceil, & \text{otherwise.} \end{cases}$$

where $n \ge 5$.

Proof. When n = 5, C(5,2) is isomorphic to K_5 . And $\bigtriangledown (C(5,2)) = 3 = \lceil \frac{5+1}{3} \rceil + 1$. Then we prove the case when $n \ge 6$. First from Theorem 1, we know $\bigtriangledown (C(n,2)) \ge \lceil \frac{n+1}{3} \rceil$.

Case 1 n = 6k where k is a positive integer. On one hand, $\bigtriangledown (C(6k, 2)) \ge 2k + 1$. Suppose $S = \{3i \mid i = 1, 2, ..., 2k\} \cup \{1\}$. Easy to see that C(6k, 2) - S is a path of length 4k - 2. Then $\bigtriangledown (C(6k, 2)) = 2k + 1 = \lceil \frac{n+1}{3} \rceil$.

Case 2 n = 6k + 2 where k is a positive integer. It is easy to see that $\nabla(C(6k, 2)) \ge 2k + 1$. We say that $\nabla(C(6k+2, 2)) \ge 2k + 2$. Otherwise suppose that S is a decycling

set with order 2k + 1 of graph C(6k + 2, 2). From Corollary 2, |E(S)| = 4k + 4. Select any 2k + 1 vertices from 6k + 2 vertices. Since $\frac{6k+2}{2k+1} < 3$, the occurrence of such pairs of vertices as *i* and *i*+1 or *i* and *i*+2 is inevitable. So |E(S)| = 4k + 4 is impossible. Then we get that $\bigtriangledown(C(6k, 2)) \ge 2k + 2$. On the other hand, let $S = \bigcup_{i=1}^{2k} \{3i\} \bigcup \{6k + 1, 6k + 2\}$. The graph C(6k, 2) - S is a path of length 4k - 1. Then $\bigtriangledown(C(6k+2, 2)) = 2k + 2 = \lceil \frac{6k+3}{3} \rceil + 1$. **Case 3** n = 6k + 4 where *k* is a positive integer. On one hand, $\bigtriangledown(C(6k+4, 2)) \ge 2k + 2$. On the other hand let $S = \bigcup_{i=1}^{2k+1} \{3i\} \bigcup \{6k+4\}$. The graph C(6k, 2) - S is a path of length 4k + 1. So $\bigtriangledown(C(6k+4, 2)) = 2k + 2 = \lceil \frac{6k+5}{3} \rceil$.

Case 4 n = 6k + 1 where k is a positive integer. From Theorem 1, $\bigtriangledown (C(6k+1,2)) \ge 2k+1$. Then let $S = \bigcup_{i=1}^{2k} \{3i\} \bigcup \{6k+1\}$. One can see that graph C(6k+1,2) - S is a path of length 4k-1. So $\bigtriangledown (C(6k+1,2)) = 2k+1 = \lceil \frac{6k+2}{3} \rceil$.

Case 5 n = 6k + 3 where k is a positive integer. On one hand, Ffom Theorem 1 $\bigtriangledown (C(6k+3,2)) \ge 2k+2$. On the other hand let $S = \bigcup_{i=1}^{2k+1} \{3i\} \bigcup \{1\}$. The graph C(6k+3,2) - S is a path of length 4k. So $\bigtriangledown (C(6k+3,2)) = 2k+2 = \lceil \frac{6k+4}{3} \rceil$.

Case 6 n = 6k + 5 where k is a positive integer. On one hand, $\bigtriangledown (C(6k+5,2)) \ge 2k+2$. In graph C(6k+5,2), any 2k+2 vertices can be incident to at most 8k+7 edges since the occurrence of such pair of vertices as (i, i+1) or (i, i+2) is inescapable. So $\bigtriangledown (C(6k+5,2)) \ge 2k+3$. Let $S = \bigcup_{i=1}^{2k+1} \{3i\} \cup \{6k+4,6k+5\}$. The graph C(6k+5,2) - S is acyclic. Then $\bigtriangledown (C(6k+5,2)) = 2k+3 = \lceil \frac{6k+6}{3} \rceil + 1$.

acyclic. Then $\bigtriangledown (C(6k+5,2)) = 2k+3 =$ This theorem is found.

Theorem 7

$$\nabla(C(n,3)) = \begin{cases} \lceil \frac{n+1}{3} \rceil + 1, & \text{if } n = 3k+2 \text{ and } k \text{ is odd,} \\ \lceil \frac{n+1}{3} \rceil, & \text{otherwise.} \end{cases}$$

where $n \ge 7$.

Proof First from Theorem 1, it is known that $\bigtriangledown (C(n,3)) \ge \lceil \frac{n+1}{3} \rceil$.

Case 1 n = 3k where k is a positive integer. Suppose that $S = \{a_t, n-1\}$ where $a_1 = 1$, $a_t < n$ and

$$a_{t+1} = \begin{cases} a_t + 2, & \text{if } t \text{ is odd,} \\ a_t + 4, & \text{if } t \text{ is even.} \end{cases}$$

There is no cycle in graph C(3k,3) - S, so $\nabla(C(n,3)) = \lceil \frac{n+1}{3} \rceil$ when n = 3k.

Case 2 n = 3k + 1 where k is a positive integer. Suppose that $S = \{a_t, n-1\}$ where $a_1 = 1, a_t < n$ and

$$a_{t+1} = \begin{cases} a_t + 2, & \text{if } t \text{ is odd,} \\ a_t + 4, & \text{if } t \text{ is even.} \end{cases}$$

The graph $C(3k+1,3) - \{a_t\}$ when k is odd is acyclic, so is graph C(3k+1,3) - S when k is even. Summarizing above, it is obtained that $\nabla(C(n,3)) = \lfloor \frac{n+1}{3} \rfloor$ when n = 3k+1.

Case 3 n = 3k + 2 where k is a positive even integer. Suppose that $S = \{a_t\}$ where $a_1 = 1, a_t < n$ and

$$a_{t+1} = \begin{cases} a_t + 2, & \text{if } t \text{ is odd,} \\ a_t + 4, & \text{if } t \text{ is even.} \end{cases}$$

Graph C(3k+2) - S is acyclic. So $\bigtriangledown (C(n,3)) = \lceil \frac{n+1}{3} \rceil$ when n = 3k+2.

Case 4 n = 3k + 2 where k is a positive odd integer. It can be seen that $n = 6 \times \frac{k-1}{2} + 5 = 6m + 5$. We prove that $\bigtriangledown(C(n,3)) \neq \lceil \frac{n+1}{3} \rceil = 2m + 2$. By contradiction. Suppose S is a decycling set of C(n,3) and |S| = 2m + 2. Make the numbers in S with ascending order, that is, $S = \{b_1, b_2, \dots, b_{|S|}\}$ where $b_1 < b_2 < \dots < b_{|S|}$. Since S is a decycling set, then |E(S)| = 8m + 8. We know S is an independent set. For any two vertices b_i and b_{i+1} in S, $\chi(b_{i+1} - b_i) \neq 1$ or 3 and $\chi(b_{i+1} - b_i) \leq 4$. Suppose there are x pairs of numbers $(b_i, b_{i+1}) \in S$ such that $\chi(b_{b+1} - b_i) = 2$ and y pairs of numbers $(b_i, b_{i+1}) \in S$ such that $\chi(b_{i+1} - b_i) = 4$. Then two equation are derived: x + y = 2m + 2 (the number of the vertices whose removal is necessary) and x + 3y = 4m + 3. It follows that 2y = 2m + 1. This is impossible. So $\bigtriangledown(C(n,3)) \neq \lceil \frac{n+1}{3} \rceil = 2m + 2$. That is $\bigtriangledown(C(6m + 5,3)) \geq 2m + 3$. Let $S = \{a_t, n-1\}$ where $a_1 = 1$, $a_t < n$ and

$$a_{t+1} = \begin{cases} a_t + 2, & \text{if } t \text{ is odd,} \\ a_t + 4, & \text{if } t \text{ is even.} \end{cases}$$

The graph C(3k,2) - S is acyclic when k is a positive odd integer, so $\nabla(C(3k+2,3)) = \lceil \frac{3k+3}{3} \rceil + 1 = k+2$.

This theorem is found.

To obtain more results on decycling number, we introduce two operators. They are used in the following proof.

Given a labeled circular graph *G* with order *n*, suppose *S* is a set of vertices $S = \{i_1, i_2, \dots, i_l\}$. Define two operators δ and δ' such that $\delta S = \{i_j - i_{j-1} - 1, i_1 - i_l - 1 \mid j = 2, 3, \dots, l\}$ and $\delta' S = \{i_j - i_{j-1} - 1 \mid j = 2, 3, \dots, l\}$ where the elements read modulo *n*. From sets $\delta S = \{p_1, p_2, \dots, p_l\}$ or $\delta' S = \{p_1, p_2, \dots, p_l\}$ it is able to get the set *S* too. But the set *S* is different according to the choice of number i_1 .

For example, suppose *G* is the circular graph C(17,8) and $S = \{3,6,7,9,10,15,17\}$. Then $\delta S = \{2,0,1,0,4,1,2\}$ and $\delta'S = \{2,0,1,0,4,1\}$. If $\delta S = \{2,1,1,0,3,1,2\}$ and suppose $i_1 = 1$ the set *S* could be $\{1,4,6,8,9,13,15\}$.

Theorem 8

$$\nabla(C(n,4)) = \begin{cases} \lfloor \frac{n+1}{3} \rfloor + 1, & n = 3k+2 \text{ and } k \text{ is a positive integer,} \\ \lfloor \frac{n+1}{3} \rfloor, & \text{otherwise.} \end{cases}$$

where $n \ge 9$.

Proof From Theorem 1, we know that $\nabla(C(n,4)) \ge \lceil \frac{n+1}{3} \rceil$. To get the lower bound, three cases are divided.

Case 1 n = 3k where k is a positive integer. Let $S_0 = \{3i \mid i = 1, 2, \dots, k\}$. In graph $C(3k, 4) - S_0$, for the vertex v = 3i + 1, two edges (3i + 1, 3i) and (3i + 1, 3i - 3) are removed. For the vertex v = 3i + 2, the edges (3i + 2, 3i + 3) and (3i + 2, 3i + 6) are removed. So the graph $C(3k, 4) - S_0$ is a cycle of length 2k. Removing any vertex of graph

 $C(3k,4) - S_0$, without loss of generality, suppose the vertex 1 is removed, the resultant graph is acyclic. So $S = S_0 \cup \{1\}$ is a \bigtriangledown -set. Then $\bigtriangledown (C(3k,4)) = k + 1 = \lfloor \frac{n+1}{3} \rfloor$.

Case 2 n = 3k + 1 where k is a positive integer. Let $S = \{3i \mid i = 1, 2, \dots, k\} \cup \{1\}$. In graph C(3k, 4) - S, for the vertex v = 3i + 1 $(1 \le i < k - 1)$, it is incident to two edges (3i + 1, 3i + 2) and (3i + 1, 3i + 5). For the vertex v = 3i + 2 $(i \ge 2)$, it is incident to two edges (3i + 2, 3i + 1) and (3i + 2, 3(i - 1) + 1). The vertices 2, n, 5, n - 3 are articulated and the edges that they are incident with are (2, n - 2), (n, 4), (5, 1) and (n - 3, 1) respectively. So the graph C(3k, 4) - S is acyclic. Then $\nabla (C(3k + 1, 4)) = k + 1 = \lceil \frac{n+3}{2} \rceil$.

Case 3 n = 3k + 2 where k is a positive integer. First we say that $\bigtriangledown (C(3k+2,4)) \neq k+1$. Otherwise suppose that S is a decycling set of k+1 vertices. From Corollary 2, |E(S)| = 4k+4. Assume the numbers in S are sorted with ascending order. For any vertex a and its successor b in S, $\chi(a-b) = 2$, $\chi(a-b) = 3$ or $\chi(a-b) = 5$. Suppose there are x pairs of numbers (a,b) such that $\chi(a-b) = 2$, y pairs of numbers (c,d) such that $\chi(c-d) = 3$ and z pairs of numbers (e,f) such that $\chi(e-f) = 5$. Two equations are followed that x + y + z = k + 1 and x + 2y + 4z = 2k + 1.

If z = 0 then y = k and x = 1. Suppose i, i + 2 are two numbers of S. Then the vertex i + 1 in graph C(n, 4) - S is an isolated vertex which contradicts Corollary 2.

Then we have $z \neq 0$. Suppose the vertices $i, i+5 \in S$ and the vertices $i+1, i+2, i+3, i+4 \notin S$. One can see that i+6 and $i+9 \notin S$ since set *S* is an independent set. The vertex $i+7 \in S$ because set *S* is a decycling set. And it forces vertex $i+8 \notin S$. The vertex $i+10 \in S$ otherwise a circuit $\{i+2, i+3, i+4, i+8, i+9, i+10, i+6\}$ appears which contradicts that set *S* is a decycling set. Then the vertices i+11 and $i+14 \notin S$. In order to get an acyclic graph, one of the vertices i+12, i+13 should be removed.

If the vertex $i + 12 \in S$ one can see that the vertices $i + 13, i + 14, i + 15, i + 16 \notin S$. Another pair of numbers $a, b \in S$ such that $\chi(a - b) = 5$ are obtained. That is to say a sequence T_1 with $\delta'T_1 = \{4, 1, 2, 1\}$ is available.

If the vertex $i + 13 \in S$ one can obtain a sequence T_2 with $\delta' T_2 = \{4, 1, 2, 2, 2, \dots, 1\}$.

The difference of T_1 and T_2 lies in the number of pairs (a,b) with $\chi(a-b) = 2$. Whatever the sequence in set *S* is, the order of the graph is a multiple of 3 which contradicts that n = 3k + 2.

In the proof of the case $z \neq 0$, $n \ge 12$. If n = 11, we know $z \neq 0$. Otherwise suppose $(1,6) \in S$, a cycle $\{3,4,11,10\}$ occurs.

Summarizing above one know that $\nabla(C(3k+2,4)) \ge k+2$. Suppose $S = \{3i \mid i = 1, 2, \dots, k\} \cup \{1, n\}$. The graph C(n, 4) - S is acyclic. Then $\nabla(C(3k+2, 4)) = k+2$.

Theorem 9 Suppose n = 3k, l = 3m - 1 and (k,m) = 1 where $k \ge 3m$. Then $\nabla(C(n,l)) = k + 1 = \lfloor \frac{n+1}{3} \rfloor$.

Proof. At first let $S_0 = \{3i \mid i = 1, 2, \dots, k\}$. For any vertex 3i + 1, $3i + 1 + l = 3(i + m) \in S_0$, then $d_{G-S_0}(3i + 1) \le 2$. And $3i + 1 - l = 3(i - m) + 2 \notin S_0$, then $d_{G-S_0}(3i + 1) = 2$. For the vertex 3i + 2, $d_{G-S_0}(3i + 2) = 2$ since $3i + 2 + l = 3(i + m) + 1 \notin S_0$ and $3i + 2 - l = 3(i - m + 1) \in S_0$ then $d_{G-S_0}(3i + 2) = 2$.

Now we prove that $G - S_0$ is a circuit but not the disjoint union of some circuits. It suffices to prove that the set $A = B = \{1, 4, 7, 10 \cdots, n-2\}$ where $A = \{1, 3m+1, 6m+1, 9m+1 \cdots\}$ and the elements are modulo *n*.

In set A, suppose there are two elements $k_1 \times 3m + 1 \equiv k_2 \times 3m + 1$. Without loss of generality we can assume that $k_1 > k_2$. There exists a positive number x such that

 $k_1 \times 3m + 1 = k_2 \times 3m + 1 + x \times 3k$ which follows that $(k_1 - k_2)m = xk$. The left can be divided by *m*, so *xk* is a multiple of *m*. On the other hand, $1 \le |k_1 - k_2| \le k$ which follows that $\frac{xk}{m} \le k$. Then we can get $x \le m$ which contradicts that *xk* is a multiple of *m*. Then every two elements in *A* are different.

Let $S = S_0 \cup \{1\}$. The graph G - S is a path of length 2k - 1.

Theorem 10 Suppose n = 3k, l = 3m - 1 and (k,m) = 2 where $k \ge 3m$. Then $\nabla(C(n,l)) = k + 1 = \lfloor \frac{n+1}{3} \rfloor$.

Proof. At first let $S_0 = \{3i \mid i = 1, 2, \dots, k\}$. For any vertex 3i + 1, $3i + 1 + l = 3(i+m) \in S_0$, then $d_{G-S_0}(3i+1) \le 2$. And $3i+1-l=3(i-m)+2 \notin S_0$, then $d_{G-S_0}(3i+1) = 2$. For the vertex 3i+2, $d_{G-S_0}(3i+2) = 2$ since $3i+2+l=3(i+m)+1 \notin S_0$ and $3i+2-l=3(i-m+1) \in S_0$ then $d_{G-S_0}(3i+2) = 2$. Removing the vertices in set S_0 , two circuits are obtained $C_1 = \{1,2,2+l,3+l,\dots,n-l,n-l+1\}$ and $C_2 = \{n-1,n-2,\dots,l-1\}$. Let $S = S_0 - \{n\} + \{1,n-1\}$. It can be verified that graph C(n,l) - S is acyclic. So $\nabla(C(n,l)) = k+1$. □

From these theorems we know the lower bound in Theorem 1 is best possible since it is reached.

References

- Sheng Bau, L.W Beineke, G.Du, Zh.Liu and R.C.Vanelell, Decycling cubes and grids, *Utilitas Mathematica*, Vol.59, 129–137, 2001.
- [2] L.W Beineke and R.C.Vandell, Decycling graphs, J.Graph Theory Vol.25, 59–77, 1996.
- [3] J.A.Bondy and U.S.K.Murty, Graph Theory with Applications, Elsevier, New York, 1976.
- [4] P.Erdös, M.Saks and V.T.Sós, Maximum induced trees in graph, *J.Comb. Theory* B, Vol.41, 61–79, 1986.
- [5] H.Ren and M.Deng, Embeddings of circular graphs(in Chinese), Acta Mathmatica Scientia, Vol.27, 1148–1154, 2007.
- [6] D.J.Ma and H.Ren, The projective plane crossing numbers of circular graphs, *Journal of Systems Science and Complexity*, Vol.21, 316–322, 2008.
- [7] E.L.Wei and Y.P.Liu, Decycling number of some graphs, OR Transaction, Vol.3, 24–28, 1999.