
An Efficient Asynchronous Parallel
Evolutionary Algorithm Based on Message

Passing Model for Solving Complex Nonlinear
Constrained Optimization

Hao Wu1 Chunlin Xu2 Xiufen Zou2,*

1School of Information Engineering, East China Jiaotong University, Nanchang , 330013, China
2School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, China

Abstract This study presents an asynchronous parallel evolutionary algorithm based on
message passing model (MAPEA) for solving complex function optimization problems with
constraints. The MAPEA combines a local search into the global search. The local search is
based on Tabu search, and the radius of neighborhood is self-adaptive. The MAPEA is
implemented in Parallel Virtual Machine (PVM) programming environment and used to solve
two widely applied complex optimization problems. The speedup and parallel efficiency of
MAPEA are analyzes and comparisons with other published results are made. Numerical
experiments show that MAPEA exhibits good performance and can handle complex
constrained optimization problems.

Keywords Evolutionary algorithm; Asynchronous Parallel; Tabu search; function
optimization.

1 Introduction
Real-world optimization problems are often complex and difficult to solve. For

example, The “BUMP” function, which developed by Keane in engineering
design[1], has been considered as a standard benchmark for nonlinear constrained
optimization, because it is highly multi-modal and its optimum is located at the
nonlinear constrained boundary and its true maximum is unknown. Various
hybridized genetic algorithms and parallel evolutionary algorithms are proposed to
solve this problem and some good results are obtained [2-6]. However, these results
can be further improved. In this paper, we suggest an asynchronous parallel
evolutionary algorithm based on message passing model (MAPEA) for solving
complex constrained optimization problems and present detailed comparison for
different situations.

2 An Asynchronous Parallel Evolutionary Algorithm
Based on Message Passing Model

* Corresponding author: xfzou@whu.edu.cn

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 280–289

In this paper, an Asynchronous Parallel Evolutionary Algorithm Based on
Message Passing Model (MAPEA) is presented. Local search based on Tabu search
is employed in the algorithm. The details of MAPEA is given as follows：

Algorithm MAPEA:
t=0;
Initialize the population P(t) = {P1,P2,…, PN}.
Evaluate P(t);
While stop_criterion not satisfied do
 If (t mod T1 = 0) and (any message received) then
 Xson = Receive () (Operator 1)
 Else then
 Xson = Multi_crossover () (Operator 2)
 If (Xson is better than Xworst)
 Then Xworst= Xson

 If (Xbest does not change after T2 cycles) then
 Xbest = Tabu_Search (Xbest) (Operator 3)
 If (t mod T3 = 0) then
 Broadcast Xbest to other processes (Operator 4)
 t=t+1
end while
end

The flowchart of MAPEA is given in Fig 1.

Figure 1: The flowchart of MAPEA

In our program, the stopping criterions are when the number of evolution is

Begi
n

Terminat

Son=Receive()

t=0;Initialize
P(t)

Son=Multi_
Crossover()；

t/T1=0&&
message

arrived

Son better
than Xworst

Replace Xworst

by Son

Xbest without
undate for T2
Generations

Tabu_search(Xbest)

t

Broad
cast Xbest

En
d

t=t

An Efficient Asynchronous Parallel Evolutionary Algorithm 281

greater than the given maximum Generation_max, or the difference of the best and
worst fitness is small enough.

(1) Operator 1 and Operator 4
 MAPEA uses PVM library functions to handle message passing. Operator 1 and

Operator 4 can be performed by using PVM library functions pvm_probe(),
pvm_recv(), pvm_upkdouble(), pvm_upkint()，and pvm_initsend(), pvm_pkdouble(),
pvm_pkint(), pvm_mcast(), pvm_send() respectively.

(2) Operator 2: Multi_crossover () [2]

Let Son be the convex combination of L parents.
1

L
p

i i
i

Son a X

 , where:

1

1
L

i
i

a

 ， 0.5 1.5ia ， 1,2,i L

(3) Operator 3: Tabu_search() [7,8]
The algorithm is described in the following.

Begin
t:=0；

Give a current solution X and let bestX = X
；

（While stop_criterion not satisfied)

 Generate N_candi candidates 1 2 _, , , N candiX X X in neighborhood of

X ;
 Evaluate candidates, and rank them from better to worse:

 ' ' '
1 2 _, , , N candiX X X ；

 If('
1X better than bestX)

 bestX ＝ X = '
1X ，Add '

1X to the Tabu List；

 ＝Else For(i 2 to _N candi)

 （If '
iX is not in the Tabu List）

 X = '
iX , Add '

iX to the Tabu List；break;

End while;
End;

While: N_candi candidates are generated in neighborhood of X with radius r. r
is set to be self-adapted in this paper. First, let r R , while R is a small positive
number. Then,

best

best

best

(1) X didn't update in last cycle

/(1) X update in last cycle

X haven't update for many cycles

r

r r

R

282 The 8th International Symposium on Operations Research and Its Applications

Add '
1X to the Tabu List means, '

1X cannot be searched in the following

List_Length cycles，List_Length is called Tabu List length or the max Tabu Cycles.
The Tabu times of any solution in Tabu List is reduced by 1 every cycle. The method
to judge whether a solution X is in the Tabu List is to check whether the distance
between X and all list elements is smaller than a given positive number . The
stopping criterion is when the number of cycles is greater than the given maximum
Gen_Tabu. N_candi , r, Gen_Tabu, List_Length and are important parameters in
Tabu search.

3 Numerical Experiments and Results

3.1 Two test problems
(1) Bump function[1]

4 2

1 1

2

1

cos () 2 cos ()

1()

nn

i i
i i

n

i
i

x x

Max F x

ix

 (1)

1 2
11

subject to: () 0.75, () 7.5
n n

i i
ii

g x x g x x n

 , where:

0 10 (1)ix i n
2 2 2 2 2
1 2 1 2 1 2 3 4 5(2) 2() 14 16 (10) 4(5) (3)Min F x x x x x x x x x x

 2 2 2 2 2
6 7 8 9 102(1) 5 7(11) 2(10) (7) 45x x x x x [9]

subject to:

1 2 7 8105 4 5 3 9 0x x x x
2 2 2

1 2 3 43(2) 4(3) 2 7 120 0x x x x

1 2 7 810 8 17 2 0x x x x
2 2
1 2 1 2 5 62(2) 2 14 6 0x x x x x x

1 2 9 108 2 5 2 12 0x x x x
2 2
1 2 3 45 8 (6) 2 40 0x x x x

2
1 2 9 103 6 12(8) 7 0x x x x

2 2
1 2 5 60.5(8) 2(4) 3 30 0x x x x

where: 10.0 10.0ix ， 1, 2, 10i .

The Handle of constraints uses the Better function [10]. The algorithm is
performed on a simulated parallel environment consisting of two PCs with CPU Intel
Pentium Dual 3.4GB connected by a 10Mbps Ethernet, and is implemented by PVM

An Efficient Asynchronous Parallel Evolutionary Algorithm 283

3.4.3.

3.2 Comparison of results under different parameters
Fig.2 and Fig.3 show the evolution of best fitness with the number of generations

for functions F1 (n=100) and F2 respectively solving by single process MAPEA
with/without Local search. The Tabu search parameters N_candi, r, Gen_Tabu,
List_Length, are set to be 20, 0.01,100, 5, r/20 respectively. The dashed lines in
these two figs clearly show the good performance of MAPEA with Local search.

Figure 2: The evolution of the best fitness with the number of generations for test

function F1(n=100) with/without Local search

Figure 3: The evolution of the best fitness with the number of generations for test

function F2 with/without Local search

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

F
1
;n

=
1
0
0

Without local search

Applying local search

0 1 2 3 4 5 6 7 8 9 10

x 10
4

20

25

30

35

40

45

50

Generations

F
2

 Without local search

Applying local search

284 The 8th International Symposium on Operations Research and Its Applications

Figure 4: The evolution of the best fitness with the number of generations for test

function F1(n=100) with different T2 values

Figure 5: Comparison between self-adapted r and fixed r (F1;n=100)

Threshold value T2 control the using frequency of Local search. Fig.4 gives the

curve of F1(n=100) solving by single process MAPEA under different T2 values.
Tabu search parameters are the same with Fig.2 and Fig.3. The green solid line shows
that small T2 values, ie. MAPEA with High Local search using frequency can fast
convergence at early stage but it failed to find a good global optimization at last. The
black point line shows a large T2 values, ie. MAPEA with low using frequency of
Local search is not good in both convergence speed and the global optimization
ability, while a middle T2 values can get the best performance.

To test the effect of self-adapted r, a comparison between fixed r and self-adapted
r has been given in Fig.5 and Fig.6. In Fig. 5, we set three values: 0.001，0.01，0.1 for

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Generations

F
1
;n

=
1
0
0

T2=50

T2=200
T2=300

T2=500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Generations

F
1

r self-adapted: R=0.01
r=0.1
r=0.01
r=0.001

An Efficient Asynchronous Parallel Evolutionary Algorithm 285

fixed r, and set R=0.01 in self-adapted r. Other parameters such as N_candi ,
Gen_Tabu, List_Length, are set to be 20, 100, 5, r/20 respectively. In Fig. 6, we
set three values: 0.0001，0.001，0.01 for fixed r, and R=0.01 for self-adapted r.
N_candi , Gen_Tabu, List_Length, are set to be 20, 200, 5, r/20 respectively.

From Fig.5 and Fig.6, we can see that MAPEA shows different features with
different r values, while it is not so easy to find a good value r. Compared to fixed r,
self-adapted r can stably convergent to better solutions.

Figure 6: Comparison between self-adapted r and fixed r (F2)

Table 1: Parallel’s improving on solution quality

Dime
nsion

one process two processes four processes

10 0.74731036152612107 0.74731036152612107 0.74731036152612107
20 0.80361910412558879 0.80361910412558879 0.80361910412558879
50 0.83526220657660477 0.83526222888379931 0.83526222917634629
100 0.84259323041536904 0.84259323060953262 0.84259773783740766
200 0.83252323699857000 0.84465905042905798 0.84692428112721241
300 0.84267960740810217 0.84712574175509692 0.84996186695570108

Table 2: Results of single process
Time(s) No. of evaluations
7.2215 119473.7

3.3 Analysis of Parallel Efficiency
This section will discuss the improvement of time and solution quality when the

apgorithm is implemented by parallel.

3.3.1 Improvement on the quality of optimal solutions
Comparisons in solution quality with single process and multi processes APEA

1 2 3 4 5 6 7 8 9 10

x 10
4

24.3

24.32

24.34

24.36

24.38

24.4

24.42

24.44

24.46

24.48

24.5

Generations

F
2

r self-adapted：R=0.001

r=0.01
r=0.001

r=0.0001

286 The 8th International Symposium on Operations Research and Its Applications

are presented in this Section. Table 1 shows the increasing of process’s number can
make MAPEA convergent to better solutions, this is quite obviously when the
dimension of decision variable increases.

3.3.2 Improvement on running time
The stop_criterion in this section is when a certain solution is obtained. The test

problem in this section is Bump function F1(n=100). Table 2 gives the running time
and No. of evaluations of single process MAPEA. Table 3 and Table 4 give the
running time and No. of evaluations under different T1 and T3 values of two and four
processes MAPEA respectively. All the data in Table 2-4 is the average value of ten
runs.

Table 3: Results of two processes

Case 1T 3T Time(s) No. of evaluations Speedup Efficiency

1 2 200 79.5465 65181.5 0.090783 0.045392
2 10 200 13.62075 72466 0.530184 0.265092
3 50 200 4.144 72282 1.74264 0.87132
4 100 200 4.37825 83531.5 1.649403 0.824702
5 200 200 4.394 101458.5 1.643491 0.821746
6 25 50 5.98425 37319 1.206751 0.603376
7 10 50 13.9095 66026 0.519178 0.259589
8 200 400 4.0895 105344 1.765864 0.882932
9 100 400 3.83925 82602.5 1.880966 0.940483

Notes: Threshold value T1 control the accept frequency. The accept frequency is high while T1 is
small. Threshold value T3 control the accept frequency. The accept frequency is high while T3 is
small.

Table 4: Results of four processes

Case 1T
 3T Time(s) No. of evaluations Speedup Efficiency

1 2 200 36.404 102681 0.198371 0.049593
2 10 200 11.396 117848.5 0.633687 0.158422
3 50 200 3.148 153955.5 2.293996 0.573499
4 100 200 1.593125 66858 4.532915 1.133229
5 200 200 3.589375 184201 2.01191 0.502978
6 25 50 3.396 157618 2.126472 0.531618
7 10 50 5.270875 68958 1.370076 0.342519
8 200 400 2.53275 155321 2.851249 0.712812
9 100 400 3.67725 219246.5 1.963832 0.490958

Notes: threshold value T1 control the acceptance frequency. The accept frequency is high while
T1 is small.；threshold value T3 control the accept frequency. The accept frequency is high while T3
is small.

It is obvious that communication frequency should not be too high. The

increasing of communication frequency is helpful to the exchange of information
among processes, it makes the algorithm convergent in less iterations, and the

An Efficient Asynchronous Parallel Evolutionary Algorithm 287

number of evaluations is decreased correspondingly. However the running time do
not be reduced (Case 1,2,6,7 in Table 3 and 4). This is because the time consumption
of the algorithm on information exchange is greatly increased as the increase of
communication frequency.

Table 3 and Table 4 indicate that the algorithm appears excellent when T3 is 2-4
times larger than T1, the algorithm gets good speedup and high efficiency at this
situation. This is because the experimental environment of this paper is two PCs and
each process can receive messages from other processes. So, it will be appropriate
that the acceptance frequency is a little higher then sending frequency.

It is exciting that MAPEA reaches super-linear speedup in case 5 at Table 4. It
shows that our MAPEA exhibits good performance.

3.3.3 Comparison of solutions with other published literature
Table 5: Comparison of MAPEA and other published algorithms for Bump function

(F1)

Dimension 1()F x in Ref[2,3] 1()F x get by MAPEA

10 0.74731036152611 0.74731036152612107
20 0.803619104125588124 0.80361910412558879
50 0.8352620128794 0.83526222917634629
100 0.8448539 0.84259773783740766
200 0.8468442 0.84692428112721241
300 0.8486441 0.84996186695570108

Table 5 gives the comparison of optimal solutions obtained by MAPEA with

some published algorithms. It is shown in Table 5 that MAPEA obtains better results
except in the case of dimension n=100. Because the algorithm in Ref[3] was
implemented on a MPP supercomputer YH-4 and MAPEA on 4 processes, MAPEA
has great potential ability to solve complex problems.

When dimensions of decision variables for Bump function F1 are n=50, the
obtained optimal solutions are given as follows.

n=50, the optimal solution F1(x*)=0.835262229176346290, where
g1(x)=0.75000000960679236, g2(x)=78.000534744033104. x* ＝
{6.28374894436865810, 3.16996935340582200, 3.15600772401839880,
3.14240685076789640, 3.12846986723756080, 3.11544735250180600,
3.10181780654239250, 3.08863941435730860, 3.07506648365465330,
3.06175355081532350, 3.04848191683316430, 3.03514686349909100,
3.02162665311784910, 3.00801582807512080, 2.99428134092484300,
2.98094508654189030, 2.96649155065091290, 2.95230776862908590,
2.93794420913259510, 2.92339726443855690, 0.48807066399310273,
0.48595033537392412, 0.48390650166368443, 0.48106670850382371,
0.47966168737935011, 0.47719502002351144, 0.47544818653611809,
0.47346981705730362, 0.47106116281709581, 0.46991189777182168,
0.46686598509958560, 0.46561190892610549, 0.46382014740226279,
0.46168661869414396, 0.45964115919871351, 0.45833006108799790,
0.45709276814929234, 0.45467123449175850, 0.45317800125395846,

288 The 8th International Symposium on Operations Research and Its Applications

0.45111762479357204, 0.44974885361226380, 0.44886340877218944,
0.44667530065435884, 0.44507122170000923, 0.44367479889036610,
0.44230701232669190, 0.44065799208960121, 0.43958801925021213,
0.43783243382101700, 0.43639238318636375}.

When compared with the optimal solution F2(x*)＝ 24.3062090683032 in
Ref[3,10], MAPEA obtains F2(x*)=24.306209068179751, where x* ＝
{2.17199637169672320, 2.36368297256372670, 8.77392573819491870,
5.09598448742434410, 0.99065476663312746, 1.43057398334893660,
1.32164420904017520, 9.82872580861278070, 8.28009166382506830,
8.37592664533950430}

4 Discussion and Conclusions
This paper presents an asynchronous parallel evolutionary algorithm based on

message passing model (MAPEA) for solving complex function optimization
problems with constraints and uses two benchmarks to test performance of MAPEA.
Because the true maximum of Bump function for different dimensions are unknown,
we give the values of objective function, constraints and decision variables are given
within 50 dimensions of decision variables by using MAPEA. These works can
provide the useful information for further research.

References
[1] A. J. Keane, Experiences with optimizers in structural design, in Proceedings of the

Conference on Adaptive Computing in Engineering Design and Control 94, ed. I. C.
Parmee, Plymouth(1994),14-27

[2] T. Guo and L. S. Kang, A New Evolutionary Algorithm for Function Optimization [J].
Wuhan University Journal of Natural Sciences, 4(4). (1999), 409-414.

[3] P. Liu, Francis Lau, Michael J Lewis and Cho-li Wang. A New Asynchronous Parallel
Evolutionary Algorithm for Function Optimization [A]. In: 7th International conference
on parallel problem solving from nature [C]. Granada, Berlin: Springer. vol.2439,
(2002),401-410.

[4] P. Liu, L.S. Kang, H.D Garis, and Y.P. Chen, An asynchronous parallel evolutionary
algorithm (APEA) for solving complex non-linear real world optimization problems,
Neural, Parallel & Scientific Computations, Vol.10, No.2, (2002),179-188.

[5] Y.S.Ong and A. J. Keane, Meta-Lamarckian Learning in Memetic Algorithms,
http://ntu-cg.ntu.edu.sg/ysong/journal/IEEE_EC_Ysong2003.pdf, (2003).

[6] B.J. Zhen, Y.X. Li and M.C.Wu, Function Optimization Algorithm based on Cellular
Automata, Computer Engneering, 29(19), (2003),66-67.

[7] R. Chelouah and P. Siarry, Tabu Search: Applied to Global Optimization [J], European
Journal of Operational Research, 123(2),(2000),256-270.

[8] D. Cvijovic and J. Klinowski, Taboo Search: An Approach to the Multiple Minima
Problem [J], Science, 267(5198), (1995), 664-666.

[9] Tahk. Min-Jea and Sun. Byung-Chan, Coevolutionary Augmented Lagrangian Methods
for Constrained Optimization [J]. IEEE Transactions on Evolusionary Computation,
4(2), (2000), 114-124.

[10] X.F. Zou, L.S. Kang, Y.X. Li, "A dynamical evolutionary algorithm for constrained
optimization problems," Proceedings of the 2002 Congress on Evolutionary
Computation, vol. 1, (2002), 890-895.

An Efficient Asynchronous Parallel Evolutionary Algorithm 289

