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Abstract  This study presents an asynchronous parallel evolutionary algorithm based on 
message passing model (MAPEA) for solving complex function optimization problems with 
constraints. The MAPEA combines a local search into the global search. The local search is 
based on Tabu search, and the radius of neighborhood is self-adaptive. The MAPEA is 
implemented in Parallel Virtual Machine (PVM) programming environment and used to solve 
two widely applied complex optimization problems. The speedup and parallel efficiency of 
MAPEA are analyzes and comparisons with other published results are made. Numerical 
experiments show that MAPEA exhibits good performance and can handle complex 
constrained optimization problems.  

Keywords Evolutionary algorithm; Asynchronous Parallel; Tabu search; function 
optimization. 

1 Introduction 
Real-world optimization problems are often complex and difficult to solve. For 

example, The “BUMP” function, which developed by Keane in engineering 
design[1], has been considered as a standard benchmark for nonlinear constrained 
optimization, because it is highly multi-modal and its optimum is located at the 
nonlinear constrained boundary and its true maximum is unknown. Various 
hybridized genetic algorithms and parallel evolutionary algorithms are proposed to 
solve this problem and some good results are obtained [2-6]. However, these results 
can be further improved. In this paper, we suggest an asynchronous parallel 
evolutionary algorithm based on message passing model (MAPEA) for solving 
complex constrained optimization problems and present detailed comparison for 
different situations. 

2 An Asynchronous Parallel Evolutionary Algorithm 
Based on Message Passing Model  
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In this paper, an Asynchronous Parallel Evolutionary Algorithm Based on 
Message Passing Model (MAPEA) is presented. Local search based on Tabu search 
is employed in the algorithm. The details of MAPEA is given as follows： 

Algorithm MAPEA: 
t=0; 
Initialize the population P(t) = {P1,P2,…, PN}.  
Evaluate P(t); 
While stop_criterion not satisfied do 
 If (t mod T1 = 0) and (any message received) then 
  Xson = Receive ()                          (Operator 1) 
 Else then 
  Xson = Multi_crossover ()                    (Operator 2) 
 If (Xson is better than Xworst) 
  Then Xworst= Xson 

 If (Xbest does not change after T2 cycles) then 
  Xbest = Tabu_Search (Xbest)                   (Operator 3) 
 If  (t mod T3 = 0)  then  
  Broadcast Xbest to other processes              (Operator 4) 
 t=t+1 
end while 
end 

The flowchart of MAPEA is given in Fig 1. 

 
Figure 1: The flowchart of MAPEA 
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greater than the given maximum Generation_max, or the difference of the best and 
worst fitness is small enough. 

(1) Operator 1 and Operator 4 
 MAPEA uses PVM library functions to handle message passing. Operator 1 and 

Operator 4 can be performed by using PVM library functions pvm_probe(), 
pvm_recv(), pvm_upkdouble(), pvm_upkint()，and pvm_initsend(), pvm_pkdouble(), 
pvm_pkint(), pvm_mcast(), pvm_send() respectively. 

(2) Operator 2: Multi_crossover () [2] 

Let Son be the convex combination of L parents. 
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(3) Operator 3: Tabu_search() [7,8] 
The algorithm is described in the following. 

Begin 
t:=0； 

Give a current solution X   and let bestX = X 
； 

（While stop_criterion not satisfied) 

 Generate N_candi candidates  1 2 _, , , N candiX X X in neighborhood of

X  ; 
 Evaluate candidates, and rank them from better to worse:

 ' ' '
1 2 _, , , N candiX X X ； 

 If( '
1X better than bestX ) 

  bestX ＝ X = '
1X ，Add '

1X to the Tabu List； 

 ＝Else For(i 2 to _N candi ) 

  （If '
iX  is not in the Tabu List） 

   X = '
iX , Add '

iX  to the Tabu List；break; 

End while; 
End; 

While: N_candi candidates are generated in neighborhood of X   with radius r. r 
is set to be self-adapted in this paper. First, let r R , while R  is a small positive 
number. Then,   
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Add '
1X to the Tabu List means, '

1X cannot be searched in the following 

List_Length cycles，List_Length is called Tabu List length or the max Tabu Cycles. 
The Tabu times of any solution in Tabu List is reduced by 1 every cycle. The method 
to judge whether a solution X is in the Tabu List is to check whether the distance 
between X and all list elements is smaller than a given positive number  . The 
stopping criterion is when the number of cycles is greater than the given maximum 
Gen_Tabu. N_candi , r, Gen_Tabu, List_Length and  are important parameters in 
Tabu search. 

3 Numerical Experiments and Results 

3.1 Two test problems 
(1) Bump function[1] 
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    , where:

0 10 (1 )ix i n     
2 2 2 2 2
1 2 1 2 1 2 3 4 5(2) 2( ) 14 16 ( 10) 4( 5) ( 3)Min F x x x x x x x x x x            

            2 2 2 2 2
6 7 8 9 102( 1) 5 7( 11) 2( 10) ( 7) 45x x x x x           [9] 

subject to: 

1 2 7 8105 4 5 3 9 0x x x x      
2 2 2

1 2 3 43( 2) 4( 3) 2 7 120 0x x x x         

1 2 7 810 8 17 2 0x x x x      
2 2
1 2 1 2 5 62( 2) 2 14 6 0x x x x x x        

1 2 9 108 2 5 2 12 0x x x x      
2 2
1 2 3 45 8 ( 6) 2 40 0x x x x        

2
1 2 9 103 6 12( 8) 7 0x x x x      

2 2
1 2 5 60.5( 8) 2( 4) 3 30 0x x x x         

where: 10.0 10.0ix   ，  1, 2, 10i   . 

The Handle of constraints uses the Better function [10]. The algorithm is 
performed on a simulated parallel environment consisting of two PCs with CPU Intel 
Pentium Dual 3.4GB connected by a 10Mbps Ethernet, and is implemented by PVM 
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3.4.3. 

3.2 Comparison of results under different parameters 
Fig.2 and Fig.3 show the evolution of best fitness with the number of generations 

for functions F1 (n=100) and F2 respectively solving by single process MAPEA 
with/without Local search. The Tabu search parameters N_candi, r, Gen_Tabu, 
List_Length,   are set to be 20, 0.01,100, 5, r/20 respectively. The dashed lines in 
these two figs clearly show the good performance of MAPEA with Local search. 

 
Figure 2: The evolution of the best fitness with the number of generations for test 

function F1(n=100) with/without Local search 
 

 
Figure 3: The evolution of the best fitness with the number of generations for test 

function F2 with/without Local search 
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Figure 4: The evolution of the best fitness with the number of generations for test 

function F1(n=100) with different T2 values 

 
Figure 5: Comparison between self-adapted r and fixed r (F1;n=100) 
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curve of F1(n=100) solving by single process MAPEA under different T2 values. 
Tabu search parameters are the same with Fig.2 and Fig.3. The green solid line shows 
that small T2 values, ie. MAPEA with High Local search using frequency can fast 
convergence at early stage but it failed to find a good global optimization at last. The 
black point line shows a large T2 values, ie. MAPEA with low using frequency of 
Local search is not good in both convergence speed and the global optimization 
ability, while a middle T2 values can get the best performance.  

To test the effect of self-adapted r, a comparison between fixed r and self-adapted 
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fixed r, and set R=0.01 in self-adapted r. Other parameters such as N_candi , 
Gen_Tabu, List_Length,   are set to be 20, 100, 5, r/20 respectively. In Fig. 6, we 
set three values: 0.0001，0.001，0.01 for fixed r, and R=0.01 for self-adapted r. 
N_candi , Gen_Tabu, List_Length,   are set to be 20, 200, 5, r/20 respectively. 

From Fig.5 and Fig.6, we can see that MAPEA shows different features with 
different r values, while it is not so easy to find a good value r. Compared to fixed r, 
self-adapted r can stably convergent to better solutions. 

 
Figure 6: Comparison between self-adapted r and fixed r (F2) 

 
Table 1: Parallel’s improving on solution quality 

Dime
nsion 

one process two processes four processes 

10 0.74731036152612107 0.74731036152612107 0.74731036152612107 
20 0.80361910412558879 0.80361910412558879 0.80361910412558879 
50 0.83526220657660477 0.83526222888379931 0.83526222917634629 
100 0.84259323041536904 0.84259323060953262 0.84259773783740766 
200 0.83252323699857000 0.84465905042905798 0.84692428112721241 
300 0.84267960740810217 0.84712574175509692 0.84996186695570108 
 

Table 2: Results of single process 
Time(s) No. of evaluations 
7.2215 119473.7 

 

3.3 Analysis of Parallel Efficiency 
This section will discuss the improvement of time and solution quality when the 

apgorithm is implemented by parallel. 
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are presented in this Section. Table 1 shows the increasing of process’s number can 
make MAPEA convergent to better solutions, this is quite obviously when the 
dimension of decision variable increases. 

3.3.2 Improvement on running time 
The stop_criterion in this section is when a certain solution is obtained. The test 

problem in this section is Bump function F1(n=100). Table 2 gives the running time 
and No. of evaluations of single process MAPEA. Table 3 and Table 4 give the 
running time and No. of evaluations under different T1 and T3 values of two and four 
processes MAPEA respectively. All the data in Table 2-4 is the average value of ten 
runs. 

 
Table 3: Results of two processes 

Case 1T  3T Time(s) No. of evaluations Speedup Efficiency 

1 2 200 79.5465 65181.5 0.090783 0.045392 
2 10 200 13.62075 72466 0.530184 0.265092 
3 50 200 4.144 72282 1.74264 0.87132 
4 100 200 4.37825 83531.5 1.649403 0.824702 
5 200 200 4.394 101458.5 1.643491 0.821746 
6 25 50 5.98425 37319 1.206751 0.603376 
7 10 50 13.9095 66026 0.519178 0.259589 
8 200 400 4.0895 105344 1.765864 0.882932 
9 100 400 3.83925 82602.5 1.880966 0.940483 

Notes: Threshold value T1 control the accept frequency. The accept frequency is high while T1 is 
small. Threshold value T3 control the accept frequency. The accept frequency is high while T3 is 
small. 

 
Table 4: Results of four processes 

Case 1T
 3T Time(s) No. of evaluations Speedup Efficiency 

1 2 200 36.404 102681 0.198371 0.049593 
2 10 200 11.396 117848.5 0.633687 0.158422 
3 50 200 3.148 153955.5 2.293996 0.573499 
4 100 200 1.593125 66858 4.532915 1.133229 
5 200 200 3.589375 184201 2.01191 0.502978 
6 25 50 3.396 157618 2.126472 0.531618 
7 10 50 5.270875 68958 1.370076 0.342519 
8 200 400 2.53275 155321 2.851249 0.712812 
9 100 400 3.67725 219246.5 1.963832 0.490958 

Notes: threshold value T1 control the acceptance frequency. The accept frequency is high while 
T1 is small.；threshold value T3 control the accept frequency. The accept frequency is high while T3 
is small. 

 
It is obvious that communication frequency should not be too high. The 

increasing of communication frequency is helpful to the exchange of information 
among processes, it makes the algorithm convergent in less iterations, and the 
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number of evaluations is decreased correspondingly. However the running time do 
not be reduced (Case 1,2,6,7 in Table 3 and 4). This is because the time consumption 
of the algorithm on information exchange is greatly increased as the increase of 
communication frequency. 

Table 3 and Table 4 indicate that the algorithm appears excellent when T3 is 2-4 
times larger than T1, the algorithm gets good speedup and high efficiency at this 
situation. This is because the experimental environment of this paper is two PCs and 
each process can receive messages from other processes. So, it will be appropriate 
that the acceptance frequency is a little higher then sending frequency. 

It is exciting that MAPEA reaches super-linear speedup in case 5 at Table 4. It 
shows that our MAPEA exhibits good performance. 

3.3.3 Comparison of solutions with other published literature 
Table 5: Comparison of MAPEA and other published algorithms for Bump function 

(F1) 

Dimension 1( )F x  in Ref[2,3] 1( )F x  get by MAPEA 

10 0.74731036152611 0.74731036152612107 
20 0.803619104125588124 0.80361910412558879 
50 0.8352620128794 0.83526222917634629 
100 0.8448539 0.84259773783740766 
200 0.8468442 0.84692428112721241 
300 0.8486441 0.84996186695570108 

 
Table 5 gives the comparison of optimal solutions obtained by MAPEA with 

some published algorithms. It is shown in Table 5 that MAPEA obtains better results 
except in the case of dimension n=100. Because the algorithm in Ref[3] was 
implemented on a MPP supercomputer YH-4 and MAPEA on 4 processes, MAPEA 
has great potential ability to solve complex problems. 

When dimensions of decision variables for Bump function F1 are n=50, the 
obtained optimal solutions are given as follows. 

n=50, the optimal solution F1(x*)=0.835262229176346290, where 
g1(x)=0.75000000960679236, g2(x)=78.000534744033104. x* ＝
{6.28374894436865810, 3.16996935340582200, 3.15600772401839880,  
3.14240685076789640, 3.12846986723756080, 3.11544735250180600, 
3.10181780654239250, 3.08863941435730860, 3.07506648365465330, 
3.06175355081532350, 3.04848191683316430, 3.03514686349909100, 
3.02162665311784910, 3.00801582807512080, 2.99428134092484300, 
2.98094508654189030, 2.96649155065091290, 2.95230776862908590, 
2.93794420913259510, 2.92339726443855690, 0.48807066399310273, 
0.48595033537392412, 0.48390650166368443, 0.48106670850382371, 
0.47966168737935011, 0.47719502002351144, 0.47544818653611809, 
0.47346981705730362, 0.47106116281709581, 0.46991189777182168, 
0.46686598509958560, 0.46561190892610549, 0.46382014740226279, 
0.46168661869414396, 0.45964115919871351, 0.45833006108799790, 
0.45709276814929234, 0.45467123449175850, 0.45317800125395846, 
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0.45111762479357204, 0.44974885361226380, 0.44886340877218944, 
0.44667530065435884, 0.44507122170000923, 0.44367479889036610, 
0.44230701232669190, 0.44065799208960121, 0.43958801925021213, 
0.43783243382101700, 0.43639238318636375}. 

When compared with the optimal solution F2(x*)＝ 24.3062090683032 in 
Ref[3,10],  MAPEA obtains F2(x*)=24.306209068179751, where x* ＝
{2.17199637169672320, 2.36368297256372670, 8.77392573819491870, 
5.09598448742434410, 0.99065476663312746, 1.43057398334893660, 
1.32164420904017520, 9.82872580861278070, 8.28009166382506830, 
8.37592664533950430} 

4 Discussion and Conclusions 
This paper presents an asynchronous parallel evolutionary algorithm based on 

message passing model (MAPEA) for solving complex function optimization 
problems with constraints and uses two benchmarks to test performance of MAPEA. 
Because the true maximum of Bump function for different dimensions are unknown, 
we give the values of objective function, constraints and decision variables are given 
within 50 dimensions of decision variables by using MAPEA. These works can 
provide the useful information for further research. 
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