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Abstract In this paper, we study an M/M/2 queueing system with balking and two heterogeneous
servers, Server 1 and Server 2. Customers arrive according to a Poisson process and form a single
waiting line. Two parallel servers provide heterogeneous exponential service to customers on a first-
come first-served basis. It is assumed that Server 1 is perfectly reliable and Server 2 is subject to
breakdowns. For this system, we obtain the stationary condition where the system reaches a steady
state. We also obtain the steady-state probabilities in a matrix form by using a matrix-geometric
solution method. Finally, we produce explicit expressions of some performance measures such as
the mean system size, the average balking rate and the probabilities that Server 2 is in various states.
Numerical illustrations are also provided.
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1 Introduction
Recent decades have seen an increasing interest in queueing systems with server

breakdowns. This has been due to their applications in manufacturing systems, service
systems, telecommunications and computer systems. In many practical queueing sys-
tems, situations often occur where servers are subject to breakdowns. For example, in a
machine processing center, machine breakdowns may occur due to factors such as power
failure, lack of preventive maintenance, or the use of inferior row materials. Other ex-
amples of queueing systems with server breakdowns can be found in service systems,
computer systems and telecommunication systems.

Single server queueing systems with server breakdowns have been studied by many
researchers including Federgruen and Green [1], Li et al. [2], Tang [3], Nakdimon and
Yechiali [4], Wang et al. [5], Wang et al. [6], Choudhury and Tadj [7], to mention a few.
Multi-server queueing systems with server breakdowns are more flexible and applicable
in practice than single server counterparts. However, due to their analytical complexity,
there have been only a few studies carried out on multi-server queueing system with
server breakdowns. Mitrany and Avi-Itzhak [8] studied an M/M/N queue with server
breakdowns and ample repair capacity. In their study, the moment generating function of
the queue size is obtained by using the transformation method. Vinod [9] considered the
same model using the matrix-geometric solution method. For N = 1, Vinod [9] imposed
some restrictions on the server down-periods (either independent of the queue length or
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only occurring when the server is active). Neuts and Lucantoni [10] and Wartenhosrt
[11] extended the models studied in [8] and [9] by considering a limited repair capacity.
Neuts and Lucantoni [10] considered a single queue of customers, each served by one
of N parallel servers. Wartenhosrt [11] considered N single-server queueing stations,
each serving its own stream of customers. Wang and Chang [12] studied an M/M/R/N
queue with balking, reneging and server breakdowns from the viewpoint of queueing.
They solved the steady-state probability equations iteratively and derived the steady-state
probabilities in a matrix form.

The models mentioned above all assumed the servers to be homogeneous, where the
individual service rates were the same for all the servers in the system. This assumption
may be valid only when the service process is highly mechanically or electronically con-
trolled. In a queueing system with human servers, we can not expect work to be carried
out at the same rate. We face situations of this kind in our everyday life, e.g., at checkout
counters in department stores, in banks, in hospitals, etc.

Singh [13] studied an M/M/2 queueing system with balking and heterogenous servers.
In [13], the author obtained the stationary queue length distribution and the mean queue
length and also compared the model with heterogenous servers and the model with ho-
mogenous servers. Kumar and Madheswari [14] studied an M/M/2 queueing system
with heterogenous servers and multiple vacations by using the matrix-geometric solution
method. They studied the stationary queue length distribution and waiting time distribu-
tion along with their means via the rate matrix. Yue et al. [15] further considered the
model in [14]. They obtained the explicit expression of the rate matrix and proved the
conditional stochastic decomposition results for the stationary queue length and waiting
time. Madan et al. [16] studied a two-server queue with Bernoulli schedules and a single
vacation policy where the two servers provide heterogenous exponential service to cus-
tomers. They obtained steady-state probability generating functions of the system size for
various states of the servers.

The models studied in [13]-[16] all assume that the servers are reliable. However, we
know that there are many practical queueing situations where the servers are subject to
lengthy and unpredictable breakdowns. For example, in a machine processing system,
machines may subject to breakdowns during production or when the system is idle. Fail-
ures occurred during production may be due to power failure or the use of inferior row
materials, while failures occurred when the system is idle may be due to server’s vacations
or planed maintenances. Therefore, failures occurred during production may be different
from failures when the system is idle. For this, in this paper, we consider a system with
unreliable servers by extending the system model presented in [13]. We model the system
as an M/M/2 queueing system with balking and two heterogeneous servers, where Server
1 is perfectly reliable but Server 2 is subject to two types of breakdowns, Type 1 break-
downs and Type 2 breakdowns. Type 1 breakdowns occur only in an idle period of Server
2, while Type 2 breakdowns occur only in a working period of Server 2. In our model,
the balking probability depends on the states of servers. If an arriving customer finds at
least one server is free and available (i.e., Server 1 is free, or Server 1 is busy while Server
2 is free and available), then the customer joins the system. If the customer finds both
servers are busy, then the customer joins the system with probability b0 (0 ≤ b0 ≤ 1),
and balks with probability 1− b0. If the customer finds Server 1 is busy while Server 2
is unavailable, then the customer joins the system with probability b1 (0 ≤ b1 ≤ 1), and
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balks with probability 1−b1.
The rest of the paper is organized as follows. In Section 2, the model description

and a quasi-birth-and-death (QBD) model formulation are presented. In Section 3, the
stationary condition is derived. The explicit expressions of the steady-state probabilities
in the matrix form and some performance measures are obtained. In Section 4, numerical
illustrations are provided to highlight the effect of some parameters on the mean system
size. Conclusions are given in Section 5.

2 Model Formulation
In this paper, we consider an M/M/2 queueing system with balking and server break-

downs, where the two servers have different service rates.

2.1 Model Assumptions
The assumptions of the system model are given as follows:

(a) Arrivals of customers follow a Poisson process with arrival rate λ . Arriving cus-
tomers form a single waiting line based on the order of their arrivals.

(b) There are two servers in the system. Server 1 is perfectly reliable, while Server 2
is subject to two types of breakdowns. Type 1 breakdowns occur only in an idle
period of Server 2, while Type 2 breakdowns occur only in a working period of
Server 2. It is assumed that Server 2 has an exponentially distributed lifetime with
different failure rates α0 (≥ 0) for Type 1 and α (≥ 0) for Type 2, respectively.
Whenever Server 2 breaks down, it is immediately repaired by a repairman. The
repaired server is as good as a new one. The customer being serviced just before
server breakdown needs to be serviced repeatedly and the elapsed service time is not
available. The repair times of Server 2 are assumed to follow an another exponential
distribution with repair rate β (β ≥ 0).

(c) If an arriving customer finds at least one server is free and available (i.e., Server 1
is free, or Server 1 is busy while Server 2 is free and available), then the customer
joins the system. If the customer finds both servers are busy, then the customer joins
the system with probability b0 (0 ≤ b0 ≤ 1), and balks with probability 1− b0. If
the customer finds Server 1 is busy while Server 2 is unavailable, then the customer
joins the system with probability b1 (0 ≤ b1 ≤ 1), and balks with probability 1−b1.

(d) If a customer arrives to find both servers free and available, the customer chooses
Server 1 with probability p (p ≥ 0) and Server 2 with probability 1− p.

(e) The two servers provide heterogeneous exponential service to customers on a first-
come first-serviced (FCFS) basis with service rates µ1 and µ2 for Server 1 and
Server 2, respectively.

(f) All stochastic processes involved in the system are independent of each other.

2.2 QBD Process
Let L(t) be the number of customers in the system at time t, and let J(t) be the status

of Server 2 at time t, defined as follows:

J(t) =

⎧
⎨
⎩

0, Server 2 is busy at time t
1, Server 2 is free at time t
2, Server 2 is broken down at time t.
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We define the system state by L(t) and J(t). Then {(L(t),J(t)), t ≥ 0} is a Markovian
process with a state space Ω as follows:

Ω={(0,0),(0,2)}∪{(1, j), j = 0,1,2}∪{(i, j), i ≥ 2, j = 1,2}.

Define the levels 000, 111, 222, ... as the sets of the system states, 000 = {(0,0),(0,2)},
111 = {(1,0), (1,1), (1,2)}, and iii = {(i,1),(i,2)} if i ≥ 2, where the elements of the
sets are arranged in lexicographical order. Using elementary arguments, the process
{(L(t),J(t)), t ≥ 0} has a transition rate matrix QQQ which has a block-tridiagonal struc-
ture given by

QQQ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

BBB00 BBB01
BBB10 BBB11 BBB12

BBB21 AAA1 AAA0
AAA2 AAA1 AAA0

AAA2 AAA1 AAA0
⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Matrix QQQ is an infinitesimal generator of the Markov process {(L(t),J(t)), t ≥ 0} and
is in the format of a quasi-birth-and-death (QBD) process. The sub-matrices AAA0, AAA1, and
AAA2 are square matrices of order 2, respectively and are given by

AAA0 =

[
λb0 0

0 λb1

]
, AAA1 =

[
−(λb0 +α +µ1 +µ2) α

β −(λb1 +β +µ1)

]
,

AAA2 =

[
µ1 +µ2 0

0 µ1

]
.

The boundary matrices are defined by

BBB00 =

[
−(λ +α0) α0

β −(λ +β )

]
, BBB01 =

[
λ p λ (1− p) 0
0 0 λ

]
,

BBB11 =

⎡
⎣

−(λ +α0 +µ1) 0 α0
0 −(λ +α +µ2) α
β 0 −(λb1 +β +µ1)

⎤
⎦ ,

BBB10 =

⎡
⎣

µ1 0
µ2 0
0 µ1

⎤
⎦ , BBB12 =

⎡
⎣

λ 0
λ 0
0 λb1

⎤
⎦ , BBB21 =

[
µ2 µ1 0
0 0 µ1

]
.

3 Steady-state Analysis
In this section, we first derive the condition for the system to reach a steady state.

Then, we derive the steady-state probabilities of the system by using a matrix-geometric
solution method. The computations of the rate matrix and the boundary probability vec-
tors are also discussed. We finally derive some performance measures of the system by
using the steady-state probabilities.
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3.1 Stationary Condition
We now derive the condition for the system to reach a steady state. Define matrix

AAA = AAA0 +AAA1 +AAA2. Then, matrix AAA can be written as

AAA =

[
−α α
β −β

]
.

It is readily known that AAA is an irreducible generator of a Markov process. Let πππ =(π0,π1)
be a stationary probability vector of this Markov process. Then, πππ satisfies the linear
equations: (π0,π1)AAA = 0 and π0 +π1 = 1. Solving these equations, we have

π0 =
β

α +β
, π1 =

α
α +β

.

By Theorem 3.1.1 in [17], the condition πππAAA0eee < πππAAA2eee is the necessary and sufficient
condition for stability of the QBD process, where eee is a column vector of order 2 with
all the elements equal to one. After some routine manipulation, the stationary condition
turns out to be

ρ =
λ (αb1 +βb0)

(α +β )µ1 +β µ2
< 1. (1)

Remark. If we let b0 = b1 = b and α = 0 in Eq. (1), then the stationary condition ρ < 1
becomes bλ < µ1+µ2, which is the stationary condition obtained by Singh in [13]. When
there is no balking, we let b0 = b1 = 1 in Eq. (1), then the stationary condition ρ < 1
becomes

ρ =
λ (α +β )

(α +β )µ1 +β µ2
< 1.

This is the stationary condition obtained by Yu et al. in [18].

3.2 Matrix-geometric Solution
Let L and J be the stationary random variables for the number of customers in the

system and the status of Server 2. We denote the stationary probability by

Pi j = {L = i,J = j}= lim
t→∞

P{L(t) = i,J(t) = j}, (i, j) ∈ Ω

where i = 1,2, ..., j = 0,1,2. Under the stationary condition ρ < 1, the stationary proba-
bility vector PPP of the generator QQQ exists. This stationary probability vector PPP is partitioned
as PPP = (PPP0,PPP1,PPP2, ...), where PPP0 = (P00,P02), PPP1 = (P10,P11,P12), and PPPi = (Pi0,Pi2) for
i ≥ 2.

Based on the matrix-geometric solution method in [17], the stationary probability
vector PPP is given by

PPP0BBB00 +PPP1BBB10 = 0, (2)
PPP0BBB01 +PPP1BBB11 +PPP2BBB21 = 0, (3)
PPP1BBB12 +PPP2(AAA1 +RRRAAA2) = 0, (4)
PPPi = PPP2RRRi−2, i = 3,4,5, ... (5)
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and the normalizing equation

PPP0eee+PPP1eee1 +PPP2(III −RRR)−1eee = 1 (6)

where III is an identity matrix of order 2, eee1 is a column vector of order 3 with all the
elements equal to one, and RRR, called the rate matrix, is the minimal non-negative solution
with a spectral radius of less than one, of the matrix quadratic equation as follows:

RRR2AAA2 +RRRAAA1 +AAA0 = 000. (7)

In order to obtain the rate matrix RRR, we need to solve Eq. (7). We accomplish this by
letting

RRR =

(
r11 r12
r21 r22

)
(8)

and using the following relation (see [17, p. 83]), RRRAAA2eee = AAA0eee, so we get

r12 =
λb0

µ1
− (1+

µ2

µ1
)r11, (9)

r21 =
λb1

µ1 +µ2
− µ1

µ1 +µ2
r22 (10)

where AAA0, AAA1, AAA2, BBB00, BBB01, BBB10, BBB11, BBB12 and BBB21 are given in Subsection 2.2.
Substituting RRR into Eq. (7) and using the Eqs. (9) and (10), after some routine manip-

ulations, we get the following equations:

r2
11 + r11r22 − f0r11 − f1r22 + f1 f3 = 0, (11)

r2
22 + r11r22 − f0r22 − f2r11 + f2 f4 = 0 (12)

where

f0 = 1+
1
µ1

(λb1 +β )+
λb0 +α
µ1 +µ2

, f1 =
λb0

µ1 +µ2
,

f2 =
λb1

µ1
, f3 = 1+

1
µ1

(λb0 +β ), f4 =
λb0 +α
µ1 +µ2

.

From Eq. (11), we get

r22 =
1

f1 − r11
(r2

11 − f0r11 + f1 f3). (13)

Substituting Eq. (13) into Eq. (12), we get the third-degree equation containing one
variable r11 as follows:

ar3
11 +br2

11 + cr11 +d = 0 (14)
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where

a = f1 − f2,

b = f1( f3 −2 f0)+ f2( f4 +2 f1),

c = f1 [ f1( f3 − f2)− f0( f3 − f0)−2 f2 f4] ,

d = f 2
1 [ f3( f3 − f0)+ f2 f4] .

The explicit expression of r11 can be obtained by using the root formula of the third-
degree equation. Then, we can obtain r22 from Eq. (13), r12 from Eq. (9) and r21 from
Eq. (10). The details are omitted since the exact solution of Eq. (14) obtained by using
the root formula method is lengthy and tedious. However, we can calculate the rate matrix
RRR approximately by using the following simple iterative method. We know that, from Eq.
(7), we have

RRR =−
[
AAA0 +RRR2AAA2

]
AAA−1

1 . (15)

Taking the initial value of RRR= 000, we can iteratively solve for RRR and can check the accuracy
of this approximation by using the equality RRRAAA2eee = AAA0eee. The value of RRR will converge
since −AAA−1

1 and AAA0 +RRR2AAA2 are positive. Hence, after each iteration, the elements of RRR
will increase monotonically.

We compare the two methods of computing matrix RRR by a numerical example. The
comparison results are given in Table 1, where the values of parameters of the system are
given as follows: λ = 10, µ1 = 10, µ2 = 15, b0 = 0.9, b1 = 0.4, p= 0.7, β = 18, α0 = 1
and α = 18.

Table 1. Comparison between the root formula method and the iterative method.

ri j Iterative method Root formula Error

r11 0.2847946242 0.2847946248 6×10−10

r12 0.1880134376 0.1880134381 5×10−10

r21 0.0845427109 0.0845427111 2×10−10

r22 0.1886432220 0.1886432222 2×10−10

Table 1 shows that the iterative method for computing the rate matrix is very simple
and accurate. The error is within 10−10. We will use this iterative method to compute the
rate matrix for performing numerical experiments in Section 4.

3.3 Boundary Probability Vectors
In order to obtain the stationary boundary probability vectors PPP0, PPP1 and PPP2, we need

to solve Eqs. (2)-(4) and Eq. (6). To accomplish this, we first prove that the matrix
DDD = BBB11 −BBB10BBB−1

00 BBB01 is a invertible matrix, and then derive the reverse of the matrix DDD.
The following lemma will be needed in our proof.

Lemma 1. Let EEE = (ei j) be a n×n square matrix defined on a real field. If

∣eii∣>
i−1

∑
j=1

∣ei j∣+
n

∑
j=i+1

∣ei j∣, i = 1,2, ...,n (16)
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where the empty summations ∑0
j=1 and ∑n

j=n+1 are defined to be zero, then EEE is invertible.
Proof. The proof is simple and thus is omitted.

The following symbols will be used in the following derivation:

x1 =
β

λ +α0 +β
, x2 =

α0

λ +α0 +β
, x3 =

λ +β
λ +α0 +β

.

Lemma 2. The matrix DDD is invertible and its inverse DDD−1 is given by

DDD−1 =
1
∣DDD∣

⎛
⎝

D11 D21 D31
D12 D22 D32
D13 D23 D33

⎞
⎠ (17)

where

D11 = x1µ1[λ + p(µ2 +α)]− x3µ2(1− p)(λb1 +β )+(λ +µ2 +α)(λb1 +β ),

D12 = x1µ1 p(µ2 +α)+(x2µ2 +α)β + x3µ2 p(λb1 +β ),

D13 =(x1µ1 p+β )(λ +µ2 +α)− x3µ2β (1− p),

D21 = x1µ1(1− p)(µ1 +α0)+ x3µ1(1− p)(λb1 +β ),

D22 = x1µ1[λ +(1− p)(µ1 +α0)]− x2µ1β +(λ +µ1 − x3µ1 p)(λb1 +β )+λα0b1,

D23 = x1µ1(1− p)(λ +α0 +µ1)+ x3µ1(1− p)β ,

D31 = x2µ1(λ +µ2)− x3[αµ1 p+α0µ2(1− p)]+α0(λ +µ2 +α)+αµ1,

D32 = x2µ2(λ +µ1)− x3[αµ1 p+α0µ2(1− p)]+α(λ +µ1 +α0)+α0µ2,

D33 = x2µ1µ2 − x3[(λ +α)pµ1 +(λ +α0)µ2(1− p)]+(λ +α0)(λ +µ2α)+(λ +α)µ1

and the determinant

∣DDD∣=−[(λ +α0)+(1− x3 p)µ1]D11 + x3(1− p)µ1D12 +(α0 + x2µ1)D13.

Proof. Let di j represent the (i, j)th element of matrix DDD, i, j = 1,2,3. Then, by matrix
manipulation, we have

d11 =−(λ +α0)− (1− x3 p)µ1, d12 = x3(1− p)µ1, d13 = α0 + x2µ1,

d21 = x3 pµ2, d22 =−(λ +α)− [1− x3(1− p)]µ2, d23 = α + x2µ2,

d31 = β + x1 pµ1, d32 = x1(1− p)µ1, d33 =−(λb1 +β )− x1µ1.

It is easy to verify that

∣d11∣− (∣d12∣+ ∣d13∣) = λ > 0, ∣d22∣− (∣d21∣+ ∣d23∣) = λ > 0,

∣d33∣− (∣d31∣+ ∣d32∣) = λb1 > 0.
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By Lemma 1, DDD is invertible. It is not difficult to obtain the co-factor Di j of di j and the
determinate ∣DDD∣ of DDD which are as given in Lemma 2. Thus the inverse DDD−1 of matrix DDD
is obtained.

Next, we solve Eqs. (2)-(4) and (6). We define the following matrices:

FFF0 =

⎛
⎝

(λ +β )µ1 α0µ1
(λ +β )µ2 α0µ2

β µ1 (λ +α0)µ1

⎞
⎠ , (18)

FFF1 =

(
D11µ2 +D12µ1 D21µ2 +D22µ1 D31µ2 +D32µ1

D13µ1 D23µ1 D33µ1

)
(19)

where Di j, for i, j = 1,2,3, is given by Lemma 2. The following Theorem 1 gives the
boundary probability vectors PPP0, PPP1 and PPP2.

Theorem 1. The boundary probability vectors are given by

PPP0 = PPP2MMM0, (20)

PPP1 = PPP2MMM1, (21)

and PPP2 is determined by the following equations:
{

PPP2(MMM1BBB12 +AAA1 +RRRAAA2) = 0

PPP2
[
MMM0eee+MMM1eee1 +(III −RRR)−1eee

]
= 1

(22)

where

MMM1 =− 1
∣DDD∣FFF1, (23)

MMM0 =− 1
λ (λ +α0 +β )∣DDD∣FFF1FFF0. (24)

Proof. Note that BBB00 is invertible, and from Eq. (2) we get that

PPP0 =−PPP1BBB10BBB−1
00 . (25)

Substituting Eq. (25) into Eq. (3), we get

PPP1(BBB11 −BBB10BBB−1
00 BBB01) =−PPP2BBB21. (26)

From Lemma 2, we know that DDD = BBB11 −BBB10BBB−1
00 BBB01 is invertible. Thus, Eq. (26) yields

that

PPP1 =−PPP2BBB21DDD−1. (27)

Substituting Eq. (27) into Eq. (25), we get

PPP0 = PPP2BBB21DDD−1BBB10BBB−1
00 . (28)
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After simple manipulations, we have

−BBB21DDD−1 =− 1
∣DDD∣FFF1, (29)

BBB21DDD−1BBB10BBB−1
00 =− 1

λ (λ +α0 +β )∣DDD∣FFF1FFF0. (30)

Substitute Eqs. (29) and (30) into Eqs. (27) and (28), we obtain PPP0 and PPP1 which are
given by Eqs. (20) and (21). Substitute Eqs. (20) and (21) into Eqs. (5) and (6), we get
Eq. (22). This proves Theorem 1.

3.4 Performance Measures
The boundary probabilities PPP0, PPP1, PPP2 and probabilities PPPi for i ≥ 3 can be used to

find the stationary distribution of the number of customers in the system. Let N denote
the number of customers in the system at an arbitrary time under the stationary condition.

Theorem 2. The stationary distribution of the number of customers in the system is given
by

P{N = 0}= PPP0eee, (31)

P{N = 1}= PPP1eee1, (32)

P{N = i}= PPP2RRRi−2eee, i ≥ 2 (33)

where the boundary probabilities PPP0, PPP1 and PPP2 are given by Theorem 1 in Subsection
3.3.
Proof. Note that

P{N = 0}= P00 +P02 = PPP0eee,

P{N = 1}= P10 +P11 +P12 = ppp1eee1,

we obtain Eqs. (31) and (32). Eq. (33) is obtained by noting that

P{N = i}= Pi0 +Pi2 = PPPieee, i ≥ 2,

and using Eq. (5). This proves Theorem 2.
Let εεε1 = (1,0)T and εεε2 = (0,1)T represent two identity column vectors of order 2,

and let δδδ 1 = (1,0,0)T , δδδ 2 = (0,1,0)T and δδδ 3 = (0,0,1)T represent three identity column
vectors of order 3. From Theorem 1 and Theorem 2, we can obtain some other perfor-
mance measures which are given by the following corollary. Since the proof is simple,
the details of the proof are omitted.
Corollary.
(a) The mean system size E[N] is as follows:

E[N] = PPP2

[
MMM1eee1 +(III −RRR)−1eee+(III −RRR)−2 eee

]
. (34)
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(b) The mean number E[Nq] of customers in the queue is as follows:

E[Nq] = PPP2 (III −RRR)−2 eee. (35)

(c) The average balking rate Br of customers is as follows:

Br = λPPP2
{
(III −RRR)−1 [(1−b0)εεε1 +(1−b1)εεε2]+ (1−b1)MMM1δδδ 3

}
. (36)

(d) The probability Pf that Server 2 is free is given by

Pf = PPP2 (MMM0εεε1 +MMM1δδδ 1) . (37)

(e) The probability Pb that Server 2 is busy is given by

Pb = PPP2

[
MMM1δδδ 2 +(III −RRR)−1 εεε1

]
. (38)

(f) The probability Pd that Server 2 is broken down is given by

Pd = PPP2

[
MMM0εεε2 +MMM1δδδ 3 +(III −RRR)−1 εεε2

]
. (39)

4 Numerical Illustrations
In order to explore the effect of various system parameters on the mean system size,

some numerical experiments are performed and the results are displayed by graphs. MAT-
LAB software was used to develop the computer program.

In Figs. 1-3, the mean system size E[N] is plotted against the arrival rate λ for chosen
values of the service rates µ1, µ2, the failure rates α0, α , and with the joining probabilities
b0, b1 satisfying the stationary condition ρ < 1.

In Fig. 1, we fix b0 = 0.9, b1 = 0.5, α0 = 6, α = 8, β = 10, and p = 0.7. The
mean system size E[N] is plotted against the arrival rate λ for chosen values of µ1 and
µ2. Figure 1 shows that the mean system size for the case of µ1 = 15 and µ2 = 15 is
the smallest among all five cases. This is because that the total service rate µ1 +µ2 = 30
for this case is the largest among all five cases. We observed from Fig. 1 that the mean
system size for the case of µ1 = 5 and µ2 = 15 is much larger than that for the case
of µ1 = 15 and µ2 = 5 although the total service rate for each of the two cases is the
same µ1 +µ2 = 20. This is because when a customer arrives to find both servers free and
available, the customer chooses the faster server, Server 2, in the first case with probability
0.3 and the faster server, Server 1, in the second case with probability 0.7. This is why
the mean system size for the first case is larger than that for the second case. As expected,
the mean system size increases with the increasing of the arrival rate λ , while it decreases
with the increasing of the service rate µ1 or µ2 for each server.

In Fig. 2, we fix µ1 = 15, µ2 = 10, α0 = 6, α = 8, β = 10, and p = 0.7. The mean
system size E[N] is plotted against the arrival rate λ for chosen values of b0 and b1. Figure
2 shows that the mean system size increases with the increasing of the joining probability
b0 or b1. This is because the larger the probability b0 or b1 is, the more customers are
allowed to join the system, which results in the increasing of the mean system size. The
graphs of the five cases indicate that the differences in the mean system size steadily
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Figure 1: Mean system size E[N] versus arrival rate λ for different values of µ1 and µ2.
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Figure 2: Mean system size E[N] versus arrival rate λ for different values of b0 and b1.
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decreases with a decreasing arrival rate. This can be explained by noting the fact that for
most of the time when the servers are free, the arrival rate is much less than the service
rate. Therefore, the mean system size will be very small when the arrival rate is small
enough, which results in a decrease in the differences among the mean system sizes for
decreasing arrival rates.
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Figure 3: Mean system size E[N] versus arrival rate λ for different values of α0 and α .

In Fig. 3, we fix µ1 = 15, µ2 = 10, b0 = 0.9, b1 = 0.5, β = 10, and p = 0.7. The mean
system size E[N] is plotted against the arrival rate λ for chosen values of α0 and α . It is
observed from Fig. 3 that the mean system size increases with the increasing of the failure
rate α0 and decreases with the increasing of the failure rate α . This can be explained by
noting the fact that α0 and α are the different failure rates for Server 2 in its idle time
and its busy time, respectively. On one hand, in the busy time of Server 2, the larger the
failure rate α is, the smaller the availability of Server 2 is. This results in an increase in
the mean system size. On the other hand, the more customers balk (are not allowed to join
the system) the more the mean system size increases. This results in a decreasing mean
system size. When the increasing mean system size due to the increasing failure rate α
is less than the decreasing mean system size due to the balking of customers, the mean
system size will decrease as the failure rate α increases. However, this is not so for the
case of failure rate α0. In the idle time of Server 2, the larger the failure rate α0 is, the
smaller the availability of Server 2 is. Also, the arriving customers will not balk, since
there is at least one free and available server in the idle time of Server 2. This results in
an increase in the mean system size. This is why the mean system size increases as the
failure rate α0 increases.
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5 Conclusions
In this paper, a heterogeneous two-server queueing system with balking and server

breakdowns was studied. We extended the model in [13] by considering server break-
downs. The model investigated in this paper is more realistic for modeling queueing
situations where the server may experience many types of breakdowns which can be re-
alized in manufacturing or production systems. The matrix-geometric solution method
has been used in this paper for obtaining the stationary condition and some performance
measures such as the stationary distribution of the number of customers in the system and
the mean system size. We finally performed numerical experiments to explore the effect
of various system parameters on the mean system size.
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