
Solution of Large-scale LP Problems Using MIP
Solvers: Repeated Assignment Problem

Daisuke Yokoya Takeo Yamada

Department of Computer Science, The National Defense Academy, Yokosuka 239-8686, Japan

Abstract With the rapid increase in computing powers in these few decades, today we can solve
LP problems with thousands of variables and constraints easily using free or commercial MIP
solvers such as CPLEX and XPRESS-MP on conventional personal computers. However, we fre-
quently encounter problems with more than a million variables/constraints, and such a problem is
often intractable in our ordinary computing environment. In this paper we consider a repeated as-
signment problem (RAP) as an example of such a large-scale problem, and show how this can be
treated by employing the delayed inclusion technique.

Keywords Linear programming, large-scale problems, MIP solver

1 Introduction
Linear programming (LP) [2] is one of the most successful OR techniques which has

been used both in public and private sectors. Its root can be traced back to the work of
G. Danzig [9] during WWII at the Combat Analysis Branch of the US Army’s Air Corp,
where they had to manage logistics of supply chains consisting of hundreds of thousands
of items and people. He continued his work in the US Air Force, and there formulated the
LP problem and proposed the simplex method to solve this in 1947 [3].

Since that time, LP has been used extensively in public sector as well as in industry.
For example, an LP model was constructed to help a variety of logistics planning for the
Berlin Airlift (June 1948 - Sept. 1949) [6]. Similar but far more sophisticated model was
used as a part of a planning tool in the 1991 Gulf War [8]. In the cold war era, a network
flow model was build to assess the transportation ability and vulnerability of the Soviet
railroad system [7].

With the rapid increase in computing powers in these few decades, today we can solve
LP problems with thousands of variables and constraints fairly easily using free or com-
mercial LP (or MIP) solvers such as CPLEX [4] and XPRESS-MP [10] on conventional
personal computers [5]. However, we frequently encounter problems with more than a
million variables and/or constraints, and such a problem is intractable in our ordinary
computing environment [12, 14, 13]. In this paper we consider a repeated assignment
problem as an example of such a large-scale problem, and show how this can be treated
by employing the delayed inclusion (of rows and columns) technique.

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 190–197



2 Repeated assignment problem
Repeated assignment problem (RAP) is defined as the K-fold repetition of the n× n

assignment problem, with the additional requirement that no assignment can be repeated
more than once. Mathematically, the problem is formulated as the following.

RAP : Minimize
K

∑
k=1

n

∑
i=1

n

∑
j=1

ck
i jx

k
i j (1)

subject to
n

∑
j=1

xk
i j = 1, ∀i,k, (2)

n

∑
i=1

xk
i j = 1, ∀ j,k, (3)

K

∑
k=1

xk
i j ≤ 1, ∀i, j, (4)

xk
i j ∈ {0,1}, ∀i, j,k. (5)

Here, ck
i j is the cost of assigning i to j at k-th repetition.

The case of K = 1 is the standard assignment problem, which can be solved in poly-
nomial time using, e.g., the Hungarian method [1]. Another special case of RAP where
ck

i j is constant over k = 1,2, . . . ,K can be reduced to the solution of a minimum cost flow
problem and K −1 maximum flow problems, and thus solvable in polynomial time [11].
However, it is not clear (to us) whether the general RAP is N P-hard or not.

By RAP0 we denote the continuous relaxation of this problem where (5) is replaced
with xk

i j ≥ 0. Eliminating apparent redundancy in (2) and (3), RAP0 is an LP problem with
(2n− 1)K + n2 constraints and n2K variables. Thus, for n = 1000 and K = 10 we have
an LP problem of 1,019,990×10,000,000, which is hard to solve on ordinary personal
computers using available solvers.

3 Delayed inclusion approach
Consider an LP problem

P : Maximize cT x (6)
subject to Ax ≤ b, x ≥ 0 (7)

with an optimal solution x∗ = (x∗j). We call column j zero (with respect to x∗) if x∗j = 0.
Otherwise, column j is non-zero. Also row i is said to be active if equality holds in the ith
constraint of (7) at x∗. If it is not active, the row is inactive. Then, if we correctly know
which columns are zero/non-zero, and which rows are active/inactive, we can derive a
smaller LP problem by eliminating all the zero columns and inactive rows, and solving
this obtain an optimal solution to P. Even if we do not have exact knowledge on this, often
we can solve the original LP problem by solving much smaller problems as follows.

Let C̄ and R̄ denote, respectively, the sets of all constraints and all variables of P, and
corresponding to an arbitrary pair of subsets C ⊆ C̄ and R ⊆ R̄, we introduce an LP prob-
lem P(R,C) as the restriction of P to this part. Partitioning the original simplex tableau as

Solution of Large-scale LP Problems Using MIP Solvers 191



C C′ const
R A00 A01 b0
R′ A10 A11 b1

obj cT
0 cT

1 0

we have P(R,C) explicitly written as

P(R,C) : Maximize cT
0 x (8)

subject to A00x ≤ b0 (9)

Let a pair of primal and dual optimal solutions to this problem be x∗(R,C), y∗(R,C).
Then, we have

Theorem 1: If

(i) A10x∗(R,C)≤ b1 (primal feasibility) and
(ii) y∗(R,C)T A01 ≥ cT

1 (dual feasibility)

are both satisfied, then the vectors obtained by filling zeros to the parts of C′ and R′, i.e.,
x∗ := (x∗(R,C),0) and y∗ := (y∗(R,C),0), are optimal to P and D, respectively.

Proof: Straightforward from the duality of LP problems.

Note that in this theorem the constraints in R′ are inactive, and the variables in C′

are zero in optimality. If we know these inactive rows and zero columns a priori, we
can obtain an optimal solution to P by solving a (usually) much smaller problem P(R,C).
Unfortunately, we do not know exactly which rows/columns can be thus eliminated until
we completely solve P. So, we propose the following approach. We start with a guess
of these sets, i.e., we take R0 as a set of plausibly active constraints, and C0 a set of
seemingly non-zero variables. Then, after solving the reduced problem, if some feasibility
conditions are not satisfied, we include the violated rows/columns and repeat the process
all over again. More precisely, the algorithm is as follows.

Algorithm DELAYED-INCLUSION.

Step 1. Take an arbitrary pair of R0 and C0, and put (R,C) := (R0,C0).
Step 2. (Using MIP solver such as CPLEX) Solve P(R,C), and obtain x∗ =

x∗(R,C), y∗ = y∗(R,C).
Step 3. If there exist rows violating A10x∗ ≤ b1, add these rows to R.
Step 4. If there exists columns violating y∗A01 ≥ c1, add these columns to C.
Step 5. If there exist neither violating rows nor columns, x∗ and y∗ (supple-

mented with appropriate 0 elements) solve P. Thus, output these and
stop. Otherwise, go back to Step 2.

In Step. 2 above, P(R,C) may be solved from scratch each time as a new problem.
Or, better than that, we can add the violated rows and columns to the optimal simplex

192 The 8th International Symposium on Operations Research and Its Applications



tableau obtained at the previous iteration and solve the augmented P(R,C) more quickly.
If P(R,C) is always feasible in DELAYED-INCLUSION, this clearly solves P. Specif-
ically, if P(C0, R̄) is feasible, it is easily proved that P(R,C) is always feasible, since
C0 ⊆C and R̄ ⊇ R.

4 Application to RAP
In applying DELAYED-INCLUSION to the problem RAP0, we need to specify the

starting pair (R0,C0) of the sets of rows and columns. As R0 we take constraints (2) and
(3), which are always active in any optimal solutions to RAP0. Contrary to this, most of
the constraints (4) are expected to be inactive.

On the other hand, appropriate choice of starting C0 is not so clear. To determine this,
we can make use of a feasible solution to RAP. Indeed, if x̄ = (x̄k

i j) is such a solution, we
define the initial set of columns C0 as

C0 := {(i, j,k) ∣ x̄k
i j = 1,1 ≤ i, j ≤ n,1 ≤ k ≤ K}. (10)

Clearly, in this case P(R̄,C0) is feasible, and therefore DELAYED-INCLUSION solves
RAP0 correctly. Moreover, if x̄ is a ‘good’ approximation, it is expected that most of the
columns of C0 are actually non-zero in optimality. The choice of (R0,C0) in DELAYED-
INCLUSION as stated above is referred to as STRATEGY1.

Alternatively, we may take C0 as the set with some other variables added to the C0
of STRATEGY1. Natural candidates for this are the variables xk

i j with small ck
i j. In

STRATEGY2, for each k we add to the above C0 the variables of the smallest and second
smallest costs in each row and column.

Then, the remaining question is how we obtain a good feasible solution x̄ to RAP. We
propose the repeated Hungarian method for this purpose. Let F ⊆ {(i, j) ∣ 1 ≤ i, j ≤ n}
be the f orbidden pair of assignment, which is initially empty, and APk(F) denotes the
assignment problem with the modified cost matrix c̄k = (c̄k

i j) defined as

c̄k
i j =

{
ck

i j, (i, j) /∈ X
∞, (i, j) ∈ X

(11)

The bipartite graph associated with this assignment problem is denoted as Hk(F), and
applying the Hungarian method to this problem, we obtain a complete matching Mk(F)
in Hk(F). The edges in Hk(F) are then excluded from the subsequent assignment by
putting F := F ∪Hk(F). The repeated Hungarian method is formally given as follows.

Algorithm REPEATED-HUNGARIAN.

Step 1. Set k := 0 and F := /0.
Step 2. Using Hungarian method solve APk(F) and obtain an optimal bipartite

matching Hk(F).
Step 3. If k ≥ K stop. Otherwise, put k := k+ 1 and F := F ∪Mk(F) and go

to Step 2.

Figure 1 shows REPEATED-HUNGARIAN for an instance with n = 5 and K = 3,
where thick lines represent Mk(F) which is removed from the bipartite graph of the next
step. Thus, we obtain a feasible solution to RAP with the objective value z = 4921.

Solution of Large-scale LP Problems Using MIP Solvers 193



Figure 1: REPEATED-HUNGARIAN for n = 5 and K = 3.

The correctness of this method can be shown by considering the following.

Lemma: For any k ≤ n, there exists a complete matching in Hk(F).

Proof: Let V1 and V2 be the sets of left and right nodes of Hk(F), respectively. For
an arbitrary U ⊆ V1, N(U) ⊆ V2 is the set of nodes which are adjacent to U . Here, we
note that the node-degree of each node of Hk(F) is n− k + 1. Then, the numbers of
edges incident to U and N(U) are, respectively, (n− k + 1)∣U ∣ and (n− k + 1)∣N(U)∣.
Also, all the edges incident to U is incident to N(U), but not vice versa. Thus, we have
∣U ∣ ≤ ∣N(U)∣, and by Hall’s theorem [7] the proof is complete.

From this the following is straightforward.

Theorem 2: REPEATED-HUNGARIAN gives a feasible solution to RAP.

5 A numerical example
Let us consider the case of n = 100 and K = 10. The size of the original RAP0 is

11,990×100,000, and solving this directly with CPLEX we obtain the optimal value as
z∗ = 24481.9.

Figure 1 shows the behavior of our algorithm with STRATEGY1. Here shown are the
numbers of rows and columns, as well as the optimal objective value at each iteration. The
size of the initial LP problem is 1990×1000, and solving this with CPLEX we obtain the
optimal value 24288.0 to this problem. Next, we include the violated rows and columns
and solve the augmented LP problem. Repeating this we obtain the same z★ = 23481.9 in
14 iterations. The size of the final problem is 2154× 4007, which is much smaller than
the original problem.

194 The 8th International Symposium on Operations Research and Its Applications



Figure 2: The behavior of DELAYED-INCLUSION.

6 Numerical experiments
This section gives the results of numerical experiments conducted to compare the

strategies as well as to evaluate the performance of the proposed algorithm. We imple-
mented DELAYED-INCLUSION algorithm in ANSI C language which solved P(R,C)
by calling an LP library of CPLEX 10.1 [4], and carried out computation on an Dell DI-
MENSION 8400 computer (Pentium(R)4 CPU, 3.40GHz, 2.00GB RAM). The instances
were prepared in the following way. First, a nominal cost c0

i j is assumed to be uniformly
random over the integer interval [1,1000], and the cost ck

i j at k-th repetition is determined
as a uniformly random integer over [Floor, Ceil], where

Floor := max{C0
i j −1000(1−σ),1}, Ceil := min{c0

i j +1000(1−σ),1000}.

Here, σ denotes the parameter representing the degree of correlation between the costs
over k = 1,2, . . . ,K. This means no correlation for σ = 0.0 and complete correlation for
σ = 1.0. Figure 2 is the case of σ = 0.4.

Tables 1 and 2 summarize the results of STRATEGY1 and STRATEGY2 for instances
of n = 100 with K = 4/8/16 and σ = 0.0/0.4/0.8, respectively. Here shown are the num-
bers of rows and columns at the initial and final stages, the CPU time in seconds, and ‘cy-
cle’ which is the number of iterations of Steps 2 through 5 in DELAYED-INCLUSION
before obtaining the optimal solution. Each row is the average over 10 randomly gener-
ated instances. We see that the numbers of rows and columns at the final stage usually
increase with σ . However, to discuss advantages between two strategies, more extensive
numerical experiments are required.

Table 3 gives the result of STRATEGY1 for larger problems with n = 200/400/600.
The number of cycles increases with K, while it is almost insensitive to the increase of σ .

Solution of Large-scale LP Problems Using MIP Solvers 195



On the other hand, CPU time increases both with K and σ The increase of the numbers
of rows (#R) between initial and final stages remains small for all cases tested, while the
number of columns (#C) at the final stage is approximately four times larger than that at
the initial stage.

Table 1: STRATEGY1 (n = 100)

K σ z∗ cycle
Initial Final

CPUsec#R #C #R #C
4 0.0 6741.7 8.3 796 400 803.8 1513.4 0.23

0.4 9137.8 8.0 796 400 806.6 1466.4 0.23
0.8 9231.0 9.5 796 400 847.3 1644.3 0.38

8 0.0 13583.4 10.8 1592 800 1638.7 3032.2 1.09
0.4 18495.5 11.5 1592 800 1678.5 3164.4 1.39
0.8 19350.7 11.1 1592 800 1919.1 4084.0 5.32

16 0.0 27726.1 14.4 3184 1600 3438.8 6398.5 8.46
0.4 38453.0 14.4 3184 1600 3666.5 7321.2 20.02
0.8 44166.8 11.8 3184 1600 4405.3 10344.8 146.07

Table 2: STRATEGY2 (n = 100)

K σ z∗ cycle
Initial Final

CPUsec#R #C #R #C
4 0.0 6741.7 5.9 796 1135.8 803.6 1554.4 0.22

0.4 9137.8 6.0 796 1131.0 807.1 1554.1 0.23
0.8 9231.0 7.9 796 1140.6 849.1 1567.6 0.38

8 0.0 13583.4 7.9 1592 2277.6 1640.2 3106.9 1.00
0.4 18495.5 9.2 1592 2277.6 1678.5 3148.7 1.33
0.8 19350.7 8.9 1592 2327.5 1924.4 3361.4 4.70

16 0.0 27726.1 11.6 3184 4574.3 3436.5 6337.8 8.15
0.4 38453.0 12.4 3184 4609.3 3665.9 6520.7 20.09
0.8 44166.8 9.6 3184 4853.1 4420.6 7715.3 112.41

7 Conclusion
We have proposed a delayed inclusion approach to solve large-scale LP problems

using MIP solvers. As a future work, we plan to extend application of this method to
other type of large-scale problems.

References
[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms and Applica-

tions, Prentice Hall, 1993.

196 The 8th International Symposium on Operations Research and Its Applications



[2] G.B. Danzig, Linear Programming and Extensions, Princeton U. Press, 1963.
[3] S.I. Gass and A.A. Assad, An Annotated Timeline of Operations Research, Kluwer, 2005.
[4] ILOG CPLEX 10.0, http://ilog.com/products/cplex, 2007.
[5] R. Miyashiro and T. Matsui, “Evaluating the power of some recent MIP solvers" (in Japanese),

System/Information/Control, Vol. 50, pp. 363-368, 2006ĄD
[6] M. Padberg, Linear Optimization and Extensions, 2nd Ed., Springer, 1999.
[7] A. Schrijver, Combinatorial Optimization, Springer, 2003.
[8] Th. Schuppe, “OR goes to war," OR/MS Today, April, pp. 36-44, 1991.
[9] Wikipedia, George Danzig, 2007.

[10] XPRESS-MP 2007A, Dash Optimization, http://www.dash
optimization.com, 2007.

[11] Y. Yajima and E. Kosaka, Multi-term class assignment problem" (in Japanese), Communica-
tions of the OR Society of Japan, Vol. 40, pp. 421-424,1995.

[12] T. Yamada and Y. Nasu, “Heuristic and exact algorithms for the simultaneous assignment
problem," European Journal of Operational Research, Vol. 123, pp. 531-542, 2000.

[13] T. Yamada and T. Takeoka, “An exact algorithm for the fixed-charge multiple knapsack prob-
lem," to appear in European Journal of Operational Research, 2007.

[14] B.-J. You and T. Yamada, “A virtual pegging approach to the precedence constrained knapsack
problem", European Journal Operational Research, Vol. 183, pp. 618-632. 2007.

Solution of Large-scale LP Problems Using MIP Solvers 197




