
A Tabu Search Algorithm to Construct BIBDs
Using MIP Solvers

Daisuke Yokoya Takeo Yamada

Department of Computer Science, The National Defense Academy, Yokosuka 239-8686, Japan

Abstract BIBD (balanced incomplete block design) is instrumental in design of experiments.
This is usually constructed using algebraic tools such as finite projective (or affine) algebra or dif-
ference sets. Recently, heuristic algorithms have been tried, including artificial neural networks,
simulated annealing, and local search method. In this paper, we present a novel approach to con-
struct BIBDs that makes use of MIP (mixed integer programming) solvers. Based on this, tabu
search algorithms is given, and this is compared against the local search method presented by a
previous researcher.

Keywords BIBD (balanced incomplete block design); MIP (mixed integer programming prob-
lem); Tabu search

1 Introduction
Let V be a set of v elements called points and B be a collection (i.e., multi-set)

of b non-empty subsets of V called blocks. (V,B) is a balanced incomplete block design
(BIBD [3, 8, 12, 22]), if the followings conditions are satisfied.

1. Each point is contained in exactly r blocks.
2. Each block contains exactly k points.
3. Every pair of distinct points is contained in exactly λ blocks.

With positive integer parameters (v,b,r,k,λ), this is denoted as BIBD(v,b,r,k,λ). BIBD
has its origin in statistical design of experiments [6], and recently it is also applied to cod-
ing theory [2, 7], failure diagnosis and group testing [10], and scheduling sports leagues
[1] among others.

In matrix notation, BIBD is a v×b binary matrix X = (xil) such that

b

∑
l=1

xil = r , i = 1, ⋅ ⋅ ⋅ ,v, (1)

v

∑
i=1

xil = k , l = 1, ⋅ ⋅ ⋅ ,b, (2)

b

∑
l=1

xilx jl = λ , i, j = 1, ⋅ ⋅ ⋅ ,v, i < j, (3)

xil ∈ {0,1} , i = 1, ⋅ ⋅ ⋅ ,v, l = 1, ⋅ ⋅ ⋅ ,b. (4)

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 179–189

Form these relations, the followings are easily shown [12].

Proposition 1. In BIBD(v,b,r,k,λ), parameters satisfy

vr = bk, (5)
r(k−1) = λ (v−1). (6)

Then, b and r are determined by (v,r,λ) as

b =
v(v−1)
k(k−1)

λ , (7)

r =
v−1
k−1

λ . (8)

Thus, in literature BIBD(v,b,r,k,λ) is often referred to as (v,k,λ)-BIBD, or alternatively
2-(v,k,λ) design [8, 25]. Given a set of integer parameters (v,b,r,k,λ) satisfying (5) and
(6), we are concerned with the existence, and if one exists construction, of such a BIBD.

For the limited case of k = 3 or k = 4, Hanani [13, 14] proved the following.

Theorem 2. Let v and λ be positive integers, and k = 3 or k = 4, Then, BIBD(v,b,r,k,λ)
exists if and only if b and r determined by (7) and (8) are both integers.

Triple system is the special case of BIBD with k = 3, and Steiner triple system is with
k = 3 and λ = 1 [8]. These are denoted as TS(v,λ) and STS(v) respectively. For the
Steiner triple system, the above result was shown by Kirkman [16] as early as in 1847,
together with a construction method for STS(v). Hanani [14] proved similar results for
k = 5 and k = 6 with some minor exceptions. However, except for these neither necessary
and sufficient conditions nor construction methods of BIBDs are known in general.

Various approaches have been tried for the construction of BIBDs, including algebraic
methods such as finite projective (or affine) geometry and difference sets [12, 22], as well
as computational methods like constraint programming [20], neural networks [18] and
meta-heuristic algorithms [5, 17]. Recently, by an exhaustive computer search over more
than 90000 days in total Bilous et al. [4] proved that no (22,8,4)-BIBD exists. Similarly,
Houghten et al. [15] announced non-existence of (46,6,1)-BIBD. On the other hand,
Morales [19] discovered six new BIBDs by an elaborate tabu search [11]. Extensive
list of BIBDs, as well as unknown BIBDs up to date, are available in the handbook by
Colbourn and Dinitz [8].

The purpose of this paper is to present a novel approach for the construction of BIBDs
that makes use of mixed integer programming (MIP) solvers [9]. In Section 2, we formu-
late the problem as a non-linear MIP problem, and present a approach to this problem
through a repeated solution of linear problems. Based on this, we develop a tabu search
algorithm in Section 3. We compare the developed algorithm against the local search
method proposed by Prestwich [21] on the same 86 instances given in his paper. Out of
86 instances we solved 78, 23 more than the local search algorithm [21] was able to solve.

2 Mathematical programming approach
Finding a matrix satisfying (1) – (4) is a kind of constraint satisfaction problem

which can be transformed into the following nonlinear 0-1 programming problem [23].

180 The 8th International Symposium on Operations Research and Its Applications

P : Maximize
v

∑
i=1

(b

∑
l=1

xil

)
+

b

∑
l=1

(v

∑
i=1

xil

)
+

v−1

∑
i=1

v

∑
j=i+1

(b

∑
l=1

xilx jl

)
(9)

subject to
b

∑
l=1

xil ≤ r , i = 1, ⋅ ⋅ ⋅ ,v, (10)

v

∑
i=1

xil ≤ k , l = 1, ⋅ ⋅ ⋅ ,b, (11)

b

∑
l=1

xilx jl ≤ λ , i, j = 1, ⋅ ⋅ ⋅ ,v, i < j, (12)

xil ∈ {0,1}, i = 1, ⋅ ⋅ ⋅ ,v, l = 1, ⋅ ⋅ ⋅ ,b. (13)

Note that equalities (1) – (3) are relaxed to inequalities (10) – (12), and the objective
function is simply the sum of the left-hand sides of these inequalities. Then, the following
is trivial.

Theorem 3.

1. P is always feasible.
2. For an arbitrary feasible solution X = (xi j) to P, let z(X) denote its objective value.

Then, we have

z(X)≤ vr+bk+
v(v−1)

2
λ . (14)

3. If (14) is satisfied with equality, (10) – (12) are also satisfied with equality, and
thus X gives a BIBD(v,b,r,k,λ).

Therefore, if equality holds in (14) with respect to an optimal solution X∗ to P, we
are done. Otherwise, if z(X∗)< vr+bk+v(v−1)λ/2 no BIBD exists. However, since P
is a nonlinear 0-1 programming problems, it is difficult to get an optimal solution. Thus,
we propose an incremental method that determines rows of X one by one.

Now, suppose that the first j rows of X is known as X j = (xil) , i = 1, ⋅ ⋅ ⋅ , j. From (1)
– (4), this is a binary matrix that satisfies the followings.

b

∑
l=1

xil = r , i = 1, ⋅ ⋅ ⋅ j, (15)

j

∑
i=1

xil ≤ k , l = 1, ⋅ ⋅ ⋅ ,b, (16)

b

∑
l=1

xilxi′l = λ , i, i′ = 1, ⋅ ⋅ ⋅ , j, i < i′. (17)

A Tabu Search Algorithm to Construct BIBDs Using MIP Solvers 181

Then, the (j+1)th row vector x = (xl) must satisfy

b

∑
l=1

xl = r, (18)

xl ≤ k−
j

∑
i=1

xil , l = 1, ⋅ ⋅ ⋅ ,b, (19)

b

∑
l=1

xilxl = λ , i = 1, ⋅ ⋅ ⋅ , j. (20)

If such an x is found, we can augment X j to a (j+1)×b matrix

X j+1 =

(
X j
x

)
. (21)

To obtain a binary vector x satisfying (18) – (20), we formulate the following opti-
mization problem.

Pj(X j) : Maximize
b

∑
l=1

xl +
b

∑
l=1

(j

∑
i=1

xil

)
xl (22)

subject to
b

∑
l=1

xl ≤ r, (23)

xl ≤ k−
j

∑
i=1

xil , l = 1, ⋅ ⋅ ⋅ ,b, (24)

b

∑
l=1

xilxl ≤ λ , i = 1, ⋅ ⋅ ⋅ , j, (25)

xl ∈ {0,1}, l = 1, ⋅ ⋅ ⋅b. (26)

Contrary to nonlinear P, Pj(X j) is a linear 0-1 programming problem which can be solved
(in many cases) using free or commercial MIP solvers. Let the optimal objective value to
Pj(X j) be z∗j(X j). Then, since the objective function (22) is the sum of the left-hand sides
of (23) and (25), any optimal solution to Pj(X j) gives a binary x satisfying (18) – (20) if
and only if

z∗j(X j) = r+ jλ . (27)

Without loss of generality the first and second rows of X j can be assumed to be

X2 =
(

r︷ ︸︸ ︷
11 ⋅ ⋅ ⋅11 ⋅ ⋅ ⋅10 ⋅ ⋅ ⋅0 0 ⋅ ⋅ ⋅0
11 ⋅ ⋅ ⋅1︸ ︷︷ ︸

λ
0 ⋅ ⋅ ⋅01 ⋅ ⋅ ⋅1︸ ︷︷ ︸

r−λ
0 ⋅ ⋅ ⋅0

)
, (28)

and a BIBD is obtained if we can augment this through (21) to a v×b matrix Xv. On the
other hand, if

z∗j(X j)< r+ jλ (29)

182 The 8th International Symposium on Operations Research and Its Applications

no BIBD exists as an extension of X j. In this case, X j may include a ‘bad’ row vec-
tor which should not be included in BIBD. Measures to cope with this problem will be
discussed in the next section.

Example 1.
For BIBD(12,22,11,6,5), except for trivial inequalities and 0-1 conditions, P2(X2) is

Maximize (3333322222 2222222111 11)x

subject to

⎛
⎝

1111111111 1111111111 11
1111111111 1000000000 00
1111100000 0111111000 00

⎞
⎠x≤

⎛
⎝

11
5
5

⎞
⎠ .

Solving this we have x∗ = (0111100010 0000100111 11) with z∗2(X2) = 21 = r+λ j, and

X3 =

⎛
⎝

1111111111 1000000000 00
1111100000 0111111000 00
0111100010 0000100111 11

⎞
⎠ .

Continuing this for j = 3, ⋅ ⋅ ⋅ ,8, we obtain

X8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1111111111 1000000000 00
1111100000 0111111000 00
0111100010 0000100111 11
0001100101 1011001100 11
0001111001 0110010111 00
1100010101 0100101110 01
1100001011 0001011101 10
1001001100 1001110011 01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

We stop here since z∗8(X8) = 50 < r+λ j = 51.

3 Tabu Search
If z∗j(X j)< r+ jλ our method stops, and to restart we have to get rid of a bad row

from the current X . Here we make a guess of such a bad row vector as follows. When
we solve Pj(X j) and obtain an optimal solution x∗ = (x∗l) with z∗j(X j) = r+ jλ , we move
forward by adding x∗ to X j. On the other hand, if z∗j(X j)< r+ jλ we have either

b

∑
l=1

xil x∗l < λ (31)

for some row i, or

b

∑
l=1

x∗l < r. (32)

In the case of (31), we consider xi as a bad row vector and eliminate it from X j. If no such
row exists, we have (32). Then, we pick up a row in X j at random, and remove it from

A Tabu Search Algorithm to Construct BIBDs Using MIP Solvers 183

X j. In either of these cases, after eliminating such a row vector from X j we restart with a
reduced matrix with j−1 rows.

To prevent a removed vector from returning to X j in the subsequent few steps, we
introduce a tabu list T to keep the eliminated vectors for a certain period of steps. The
size of T is specified by a parameter T L (tabu length), and vectors in the tabu list are
forbidden to be an optimal solution to Pj(X j). To this end, let T = {x(1),x(2), ⋅ ⋅ ⋅ ,x(p)}
be the current tabu list, and consider the following 0-1 programming problem.

Pj(X j,T) : Maximize (22)
subject to (23) – (26),

x(s) ⋅ x≤ r−1, s = 1, ⋅ ⋅ ⋅ , p. (33)

Let z∗j(X j,T) be the optimal objective value to this problem. Due to (33) no vectors in
the tabu list satisfy (23) with equality. Then, if z∗j(X j,T) = r + λ j holds, the optimal
x∗j(X j,T) is not tabooed, and thus we can expand X j by appending this vector to X j.
Otherwise, we choose a row vector as stated before and eliminate it from X j. The tabu
search algorithm [11], with the tabu length explicitly shown as TABU_BIBD(T L), is as
follows.

Algorithm TABU_BIBD

Step 1. Let j := 2, X2 be given as (28), and T := /0.

Step 2. If j = v, then X j is a BIBD. Output this and stop.

Step 3. Solve an IP problem Pj(X j,T)ĄC If z∗j(X j,T) = r + jλ , go to
Step 4. Otherwise go to Step 5.

Step 4. Append the solution to X j and augment it to X j+1. Go back to Step
2ĄD

Step 5. If there exists a row i satisfying (31), go to Step 6. Otherwise pick
up a row vector from X j at random and go to Step 6.

Step 6. Eliminate the selected vector from X j, let j← j− 1, and add the
eliminated vector to the tabu list T . (If ∣T ∣ > T L, the oldest
vector is removed from T)

Step 7. If terminating condition is satisfied, then print “Tabu search failed,"
and stop. Otherwise go back to Step 2.

Example 2.
In applying the tabu search algorithm to BIBD(16,16,6,6,2), the tabu search produced a
correct BIBD in 0.02 seconds as follows. Initially, the tabu list is initialized as T = /0. At

184 The 8th International Symposium on Operations Research and Its Applications

j = 8 we obtain

X8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1111110000 000000
1100001111 000000
1100000000 001111
0100010100 110010
0010010110 000101
1001000010 110100
0001011010 001010
0001100101 000110

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here we have an optimal solution x∗ = (001000100 010011) with z∗8(X8) = 21 < r+λ j =
22. The first row conflicts against x∗, since x1 ⋅ x∗ = 1 < λ = 2. We remove x1 from X8
and solve P7(X ′7,T) with the reduced matrix X ′7. Again we have a conflicting row x4 and
eliminating this obtain a matrix X ′6 with 6 rows. After this, 10 forward moves are repeated
and at this point we obtain a BIBD(16,16,6,6,2) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1100001111 000000
1100000000 001111
0100010100 110010
1001000010 110100
0001011010 001010
0001100101 000110
0101101000 100001
0110110010 000100
0111000001 011000
1011010100 000001
1000110001 101000
0000100110 011001
0000011001 010101
0010001100 101100
0010000011 100011
1010101000 010010

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Prestwich [21] proposed a local search algorithm, and tried 86 instances with v and b
satisfying vb ≤ 1000. Tables 1 and 2 compare his result against our tabu search method
with MIP solvers. In these tables CPU time in seconds is shown for each method. The
column of ‘Prestwich’ is the result of his method on a DEC Alphaserver 100A 5/300
computer (300MHz), while ‘TABU’ is by TABU_BIBD(10) on a faster DELL Precision
670 machine (3.8GHz × 2).

From these tables we see that the tabu search method of this paper solves all the in-
stances that were solved by Prestwich. The tabu search algorithm solved some additional
instances that Prestwich’s algorithm were not able to solve. Table 3 gives a summary of
the numbers of instances out of 86 solved by Prestwich’s and our method. Tabu search
solved approximately 20 more instances than the Prestwich’s, irrespective of tabu length.

A Tabu Search Algorithm to Construct BIBDs Using MIP Solvers 185

Table 1: Result of computation for Prestwich’s 86 instances (Part 1).

v b r k λ vb Prestwich TABU
8 14 7 4 3 112 0.00 0.00

11 11 5 5 2 121 0.04 0.01
10 15 6 4 2 150 0.04 0.02
9 18 8 4 3 162 0.05 0.00

13 13 4 4 1 169 0.01 0.00
10 18 9 5 4 180 0.12 0.01
8 28 14 4 6 224 0.06 0.00

15 15 7 7 3 225 0.61 0.01
11 22 10 5 4 242 1.20 0.01
16 16 6 6 2 256 0.54 0.02
12 22 11 6 5 264 1.23 0.02
10 30 12 4 4 300 0.12 0.01
16 20 5 4 1 320 0.16 0.01
9 36 16 4 6 324 0.21 0.00
8 42 21 4 9 336 0.25 0.00

13 26 8 4 2 338 0.50 0.06
13 26 12 6 5 338 7.93 0.08
10 36 18 5 8 360 1.08 0.03
19 19 9 9 4 361 9.73 0.05
11 33 15 5 6 363 1.79 0.01
14 26 13 7 6 364 — 0.88
16 24 9 6 3 384 9.80 0.05
12 33 11 4 3 396 0.33 0.22
21 21 5 5 1 441 0.22 0.02
8 56 28 4 12 448 0.12 0.01

10 45 18 4 6 450 0.08 0.01
15 30 14 7 6 450 — 0.95
16 30 15 8 7 480 — 0.44
11 44 20 5 8 484 1.13 0.01
9 54 24 4 9 486 0.21 0.00

13 39 12 4 3 507 1.22 0.02
13 39 15 5 5 507 11.20 0.01
16 32 12 6 4 512 — 3.57
15 35 14 6 5 525 — 0.05
12 44 22 6 10 528 27.90 0.03
23 23 11 11 5 529 — 0.07
10 54 27 5 12 540 0.98 0.02
8 70 35 4 15 560 0.13 0.00

17 34 16 8 7 578 — 7.37
10 60 24 4 8 600 0.75 0.01

186 The 8th International Symposium on Operations Research and Its Applications

Table 2: Result of computation for Prestwich’s 86 instances (Part 2).

v b r k λ vb Prestwich TABU
11 55 20 4 6 605 0.80 0.01
11 55 25 5 10 605 4.45 0.06
18 34 17 9 8 612 — 30.91
25 25 9 9 3 625 — 0.24
15 42 14 5 4 630 42.90 0.05
21 30 10 7 3 630 — 61.42
16 40 10 4 2 640 4.22 0.08
16 40 15 6 5 640 — 0.84
9 72 32 4 12 648 0.54 0.01

15 45 21 7 9 675 — 0.06
13 52 16 4 4 676 3.76 0.01
13 52 24 6 10 676 49.70 0.02
10 72 36 5 16 720 1.33 0.01
19 38 18 9 8 722 — —
11 66 30 5 12 726 1.52 0.01
22 33 12 8 4 726† — —
14 52 26 7 12 728 — 0.07
27 27 13 13 6 729 — 0.54
21 35 15 9 6 735 — —
10 75 30 4 10 750 0.92 0.02
25 30 6 5 1 750 14.30 0.03
20 38 19 10 9 760 — —
16 48 15 5 4 768 43.20 0.15
16 48 18 6 6 768 — 0.37
12 66 22 4 6 792 1.38 0.02
12 66 33 6 15 792 12.80 0.03
9 90 40 4 15 810 0.69 0.02

13 65 20 4 5 845 1.40 0.01
11 77 35 5 14 847 5.11 0.02
21 42 10 5 2 882 — 798.86
21 42 12 6 3 882 — —
21 42 20 10 9 882 — —
16 56 21 6 7 896 — 0.11
10 90 36 4 12 900 0.99 0.01
15 60 28 7 12 900 — 0.05
18 51 17 6 5 918 — 1.34
22 42 21 11 10 924 — —
15 63 21 5 6 945 30.70 0.20
16 60 15 4 3 960 6.31 0.02
16 60 30 8 14 960 — 1.12
31 31 6 6 1 961 2.04 0.04
31 31 10 10 3 961 — 1.70
31 31 15 15 7 961 — 0.10
11 88 40 5 16 968 4.07 0.04
22 44 14 7 4 968 — —
25 40 16 10 6 1000 — —

† No solution exists. See [4].

A Tabu Search Algorithm to Construct BIBDs Using MIP Solvers 187

Table 3: Summary of computation.

Methods Solved Unsolved
Prestwitch 55 31
TABU_BIBD(5) 77 9
TABU_BIBD(10) 77 9
TABU_BIBD(20) 78 8

4 Conclusion
We have presented tabu search algorithm to find BIBDs that make use of MIP

solvers. The developed method solved more instances than the previous algorithm based
on local search method. However, with this algorithm we were unable to find new BIBDs.
To solve problems with v≥ 30, some new ideas are required, and thus make the algorithm
more efficient.

References
[1] I. Anderson, Combinatorial Designs and Tournaments, Oxford University Press, 2006.
[2] T. Beth, D. Jungnickel and H. Lenz, Design theory, Vol. 2, Cambridge University Press, 1999.
[3] N.L. Biggs, E.K. Lloyd and R.J. Wilson, “The history of combinatorics," R.L. Graham, M.

Grötschel and L. Lovász (Editors), Handbook of Combinatorics, Vol. 2, MIT Press, 1996, pp.
2163-2198.

[4] R. Bilous, C. W. H. Lam, L. H. Thiel, B. P. C Li, G. H. J. van Rees, S. P. Radziszowski
,W. H. Holzmann and H. Kharaghani, “There is no 2-(22, 8, 4) block design," Journal of
Combinatorial Designs, vol. 15, pp. 262-267, 2006.

[5] P. Bofill, R. Guimera and C. Torras, “Comparison of simulated annealing and mean field
annealing as applied to the generation of block designs," Neural Networks, Vol. 16, pp. 1421-
1428, 2003.

[6] G. E. Box, W. G. Hunter, J. S. Hunter and W. G. Hunter, Statistics for Experiments: Design,
Innovation, and Discovering, 2nd Ed., John Wiley & Sons, 2005.

[7] A. E. Brouwer, “Block designs," R.L. Graham, M. Grötschel and L. Lovász (Editors) Hand-
book of Combinatorics, Vol. 1, MIT Press, 1996, pp. 693-745.

[8] C. J. Colbourn, J. H. Dinitz, Handbook of Combinatorial Designs, 2nd Ed., Chapman &
Hall/CRC, 2007.

[9] ILOG CPLEX 10.0, http://www.ilog.com/products/cplex/, 2006.
[10] D. Z. Du, F. K. Hwang, Combinatorial Group Testing and its Applications, 2nd Ed., World

Scientific Publ, 2000.
[11] F. Glover, M. Laguna, Tabu Search, Kluwer, 1997.
[12] M. Hall, Jr., Combinatorial Theory, 2nd Ed., John Wiley & Sons, 1998.
[13] H. Hanani, “The existence and construction of balanced incomplete block designs", The An-

nals of Mathematical Statistics, Vol. 32, pp. 361-386, 1961.
[14] H. Hanani, “Balanced incomplete block designs and related designs", Discrete Mathematics,

Vol. 11, pp. 255-369, 1975.
[15] S. K. Houghten, L. H. Thiel, J. Janssen and C. W. H. Lamet, “There is no (46, 6, 1) block

design", Journal of Combinatorial Designs, Vol. 9, pp. 60-71, 2001.

188 The 8th International Symposium on Operations Research and Its Applications

[16] T. Kirkman, “On a problem in combinations", Cambridge and Dublin Mathematical Journal,
Vol. 2, pp. 191-204, 1847.

[17] D. L. Kreher, D. R. Stinson, Combinatorial Algorithms: Generation, Enumeration and
Search, CRC Press, 1999.

[18] T. Kurokawa, Y. Takefuji, “Neural network parallel computing for BIBD problems", IEEE
Trans on Circuits and Systems, II, Vol. 39, pp. 243-247, 1992.

[19] L. B. Morales, “Constructing difference families through an optimization approach: six new
BIBDs", Journal of Combinatorial Designs, Vol. 8, pp. 221-309, 2000.

[20] S. Prestwich, “Balanced incomplete block design as satisfiability", Irish Conference on AI
and Cognitive Science, Vol. 12, pp. 189-198, 2001.

[21] S. Prestwich, “A local search algorithm for balanced incomplete block designs", Lecture
Notes in Computer Science, Vol. 2627, pp.132-143, Springer, 2003.

[22] V. N. Sachkov, Combinatorial Methods in Discrete Mathematics, Cambridge University
Press, 1977.

[23] A. Schrijver, Theory of Linear and Integer Programming, John Wiley & Sons, 1998.
[24] R. Sedegewick, Algorithms in C, 3rd Ed., Addison-Wesley, 1998.
[25] D. R. Stinson, Combinatorial Designs, Construction and Analysis, Springer, 2004.

A Tabu Search Algorithm to Construct BIBDs Using MIP Solvers 189

