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Abstract The linear arboricity /a(G) of a graph G is the minimum number of linear forests which
partition the edges of G. In this paper, it is proved that if G is a planar graph with A(G) > 5 and

without 4-cycles, then la(G) = [@] Moreover, the bound that A(G) > 5 is sharp.
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1 Introduction

In this paper, all graphs are finite, simple and undirected. Given a graph G = (V,E).
Let N(v) = {u|uv € E(G)} and Ny (v) = {u|u € N(v) and d(u) = k}, where d(v) = [N(v)|
is the degree of the vertex v. We use A(G) and 0(G) to denote the maximum (vertex)
degree and the minimum (vertex) degree, respectively. A k-, k*- or k™ -vertex is a vertex
of degree k, at least k, or at most k, respectively. For a real number x, [x] is the least
integer not less than x and | x| is the largest integer not larger than x.

A linear forest is a graph such that each of its components is a path. A map ¢ from
E(G) of a graph G to {1,2,...,t} is called a t-linear coloring if the induced subgraph of
edges having the same color i is a linear forest for any i(1 < i <¢). The linear arboricity
la(G) of G defined by Harary [2] is the minimum number ¢ for which G has a -linear
coloring.

Akiyama, Exoo, and Harary [1] conjectured that /a(G) = [(A(G) + 1)/2] for any
regular graph G. It is obvious that la(G) > [A(G)/2] for any graph G and la(G) >
[(A(G) +1)/2] for every regular graph G. Hence the conjecture is equivalent to the
following conjecture.

Conjecture A. For any graph G, [@W <la(G) < (%]

The linear arboricity has been determined for some class of graphs (see [4]). Conjecture

A has already been proved to be true for all planar graphs, see [3] and [5]. Wu [3] proved
that for a planar graph G with girth g and maximum degree A, la(G) = [@] if A > 13,

orA>7andg>4,orA>5and g >5,0or A>3 and g > 6. In [4], It is proved that if G
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is a planar graph with A(G) > 7 and without 4-cycles, then la(G) = (@] In this paper,

we improve the result and obtain the following result.

Theorem 1.

If G is a planar graph with A(G) > 5 and without 4-cycles, then la(G) = f@]

The theorem is a corollary of Theorem 2. Let G be the line graph of a 3-regular planar
graph of girth 5, e. g. the line graph of dodecahedron. It is easy to prove that G is the
4-regular planar graph without 4-cycles and it follows that la(G) = 3. So the bound that
A(G) > 5 in Theorem 1 is sharp.

2 Main Result and its proof

Given a ¢-linear coloring ¢ and a vertex v of a graph G, we denote Cﬁp(v) the set of
colors appears i times at v, where i = 0,1,2. Then |Cg(v)| + |C(i,(v)\ + |C§,(v)| =t and
\C(},(v)| +2|C§,(v)| =d(v), so that

21CH (V)| +1Cp(v)| =2t —d(v). (1)

If a color i € Cg(v), then denote by (v,i) the edge colored with i and incident with v. For
any two vertices u and v, let Cy(u,v) = C (1) UCH (v) U (Cy () N Cyy(v)), that is, Cy (u,v)
is the set of colors that appear at least two times at u and v. A monochromatic path is a
path of whose edges receive the same color. For two different edges e; and e, of G, they
are said to be in the same color component, denoted e; <> ey, if there is a monochromatic
path of G connecting them. Furthermore, if two ends of e; are known, that is, ¢; = x;y;
(i =1,2), then x1y; > x2y, denotes more accurately that there is a monochromatic path
from x; to y, passing the edges xy; and xpy, in G( that is, y; and x; are internal vertices in
the path). Otherwise, we use x1y; > xay2( or e; > e3) to denote that such monochromatic
path passing them does not exist. Note that x;y| <> xoy, and x1y; <> y»x; are different.

Theorem 2.
Suppose that t > 3 is an integer and G is a planar graph with maximum degree A(G) < 2t
and without 4-cycles. Then G has a t-linear coloring.

Proof. Let G = (V,E) be a minimal counterexample to the theorem, and we assume that
G has been embedded in the plane. A face of G is said to be incident with all edges and
vertices on its boundary. The degree of a face f, denote by d(f), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k- or k™ -face is face of
degree k, at least k or at most k, respectively. Two faces sharing an edge e are said to be
ad jacent. Let L= {1,2,--- ¢} be the color set. First, we prove some claims for G.

Claim 1. For any uv € E(G), dg(u) +dg(v) > 2t +2 > 8.

Proof of Claim 1. Suppose that G has an edge uv with dg(u) +dg(v) < 2t + 1. Then
G' = G — uv has a t-linear coloring ¢ by the minimality of G. Since dg (1) +dg (v) =
d(u)+d(v)—2<2t—1, [Cyp(u,v)| <t. Now we color uv with a color from L\Cy(u,v).
Thus ¢ is extended to a ¢-linear coloring of G, a contradiction. O
By the claim, we have
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(1) 6(G)>2,and

(2) any two 3™ -vertices are not adjacent, and

(3) any 3-face is incident with three 47 -vertices, or one 3~ -vertex
and two 5" -vertices.

Claim 2. Every vertex is adjacent to at most two 2-vertices. At the same time, if a
vertex v is adjacent to two 2-vertices, then for any 2-vertex x incident with v, N(x) =
{v,x'}, we have x'v & E(G).

Proof of Claim 2. Suppose, to be contrary, that G does contain a vertex v that it is
adjacent to three 2-vertices x,y,z. let x',y’, 7 be the other neighbors of x,y, z, respectively.
Since G is minimal, G* = G — vx has a ¢-linear coloring ¢. Without loss of generality,
assume @(xx') = 1. If there is a color ¢ such that ¢ € C(v), or ¢ € Cp(v)\{1}, or ¢ =
1 € Cy(v) but xx’ ¢ (v,1), then color directly vx with ¢. So Cg(v) =0, Cy(v) = {1} and
xx' <> (v,1). This implies that @(vy) # 1 or @(vz) # 1. Assume that ¢(vy) # 1. Thus we
can recolor vy with 1 and color vx with @(vy) ( Note that if @(yy’) = 1, then yy’ 4> x'x). So
¢ is extended to a ¢-linear coloring of G, a contradiction. Hence every vertex is adjacent
to at most two 2-vertices.

Now suppose that there is a vertex v such that v is adjacent to two 2-vertices x,y and
two neighbors of y are adjacent. Let {x'} = N(x)\v, {y'} = N(y)\v. Then y'v € E(G).
Since G is minimal, G* = G — vx has a ¢-linear coloring ¢. Without loss of generality,
assume @ (xx') = 1. It follows from the above argument that we have Cg (v)=0, C(},(v) =
{1} and xx’ <+ (v,1). If @(vy) = 1, then @(yy") = 1 (since xx’ <> (v, 1)) and it follows that
we can recolor vy, vy with 1, yy' with @(vy’), and color vx with @(vy’). Otherwise, we
can recolor vy with 1 and color vx with @(vy). Thus we obtain a ¢-linear coloring of G, a
contradiction. We complete the proof of Claim 2. O

Claim 3. For every 3-face uvwu, max{d(u),d(v),d(w)} > 5.

Proof of Claim 3. Suppose, to be contrary, that there is a 3-face uvwu such that
max{d(u),d(v),d(w)} < 4. By Claim 1, we have d(u) = d(v) = d(w) = 4. Since G is
minimal, G’ = G — uv has a t-linear coloring @. If there is a color & such that o & C(p(u7 V),
or & € Cyy(u) NCyy(v) but (u, ) # (v, @), then we can color uv with ¢ to obtain a ¢-linear
coloring of G, a contradiction. So Cy(u,v) = L, and for any & € Cy(u) N1Cy(v), we have
(u, ) <+ (v, ). Since dgr (u) = dey (v) = 3, L= {1,2,3} and max{Cg (u),Cq(v)} < 1.

Suppose that @(uw) = @(vw). Without loss of generality, assume that @ (uw) = 1. If
\Cé(u)\ = 0, then we can recolor uw with a color from {2,3}\Cé(w), and color uv with
1. Otherwise, assume that Cé(u) = {2}. It follows that Cé(v) = {3}. Since d(w) =4,
\C(% (w)| < 2. Without loss of generality, assume that 3 ¢ Cg, (w). Thus, we can recolor uw
with 3, color uv with 1.

Suppose that @ (uw) # @(vw). Without loss of generality, assume that ¢(uw) = 1 and
ow)=2.If 1l € C(%(u), then 2 € C%(v), and then we can recolor vw with 1, uw with 2
and color uv with 1. Otherwise, Cé(w) = {1,2} and we can recolor uw with 3, color uv
with 1.

By the above steps, ¢ is extended to a z-linear coloring of G, a contradiction. Hence
Claim 3 is true. O
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By Euler’s formula |V (G)| — |E(G)| + |F(G)| = 2, we have
Y d(v)=4)+ ) ([d(f)—4) =-4(V(G)| - [E(G)|+|F(G)]) = -8 <0.

veV feF
We define ch to be the initial charge by ch(x) = d(x) — 4 for each x € V(G)UF(G). In
the following, we will reassign a new charge denoted by ¢/’ (x) to each x € V(G) UF(G)
according to the discharging rules below. Since our rules only move charges around, and
do not affect the sum, we have

Y = )Y chx)=-8. (%)

x€V(G)UF(G) x€V(G)UF(G)

If we can show that ¢h’(x) > 0 for each x € V(G) UF(G), then we obtain a contradiction
to (), completing the proof. The discharging rules are defined as follows.

R1. Let f be a 3-face uvwu with d(u) < d(v) <d(w). If d(u) = d(v) = 4, then f
receives % from each of u and v, receives % from w. Otherwise, f receives % from each of
v and w.

R2. Let z be a 2-vertex. First, it receives % from each of its neighbors. Then, if z is
incident with a 3-face f, then it receives 1 from its incident 6" -face. Otherwise, it receives
% from each of its incident faces.

R3. Let z be a 3-vertex. z receives % from each of its incident 5™ -faces.

R4. Let z be a 4-vertex. Let f be a 57 -face and z;,z, be two neighbors of z incident
with f. If d(z1) = d(z2) = 4, then z receives } from f. Otherwise, if min{d(z),d(z2)} >
5, then z receives % from f. Otherwise, z receives % from f.

Let f be a face of G. If d(f) = 3. then ch'(f) > ch(f) +max{2x } + 1,2 x 1,3 x
%} =0. If d(f) = 4, then ch'(f) = ch(f) = 0. Suppose that d(f) = 5. If f is incident
with at most two 4~ -vertices, then ¢/’ (f) > ch(f) —2 x & = 0 by R1-R4. Otherwise,
there are two adjacent 4~ -vertices u, v incident with f, and it follows from Claim 1 that
d(u) = d(v) = 4. Thus, if f is incident with a 3™ -vertex w, then two neighbors of w
incident with f must be 5*-vertices, and it follows that c/'(f) > ch(f) — 3 —2x =0
by R2-R4. Otherwise, all 4™ -vertices incident with f are 4-vertices, and it follows from
R4 that ch'(f) > ch(f) —max{}+2x 1,5 x 1} = 0. Suppose that d(f) > 6. Let a be the
number of 2-vertices incident with f and a 3-face. Then a < |(d(f) —2)/3] by Claim 2.
Let b be the number of 3~ -vertices which receive § from f. Then b < | (d(f) —2a)/2]
by Claim 1. The number of 4-vertices incident with f is at most d(f) —2(a+b) + 1. So
' (f) > ch(f)—a—bx%—(d(f)—2(a+b)+1)x 1 >0.

Let v be a vertex of G. If d(v) = 2, then ch'(v) = ch(v) +2 x 3 +min{1,2x 1} =0
by R2. If d(v) = 3, then ¢/ (v) = ch(v) + min{2 x £,3 x 1} =0 by R3. If d(v) = 4, then
! (v) > ch(v)+min{i+1,2x 1} —2x 1 =0byR3. If d(v) =5, then it is incident with
at most two 3-faces and it follows that ch'(v) > ch(v) — 2 x % =0 by R1. Suppose that
d(v) > 6. If v is adjacent to at most one 2-vertex, then v is incident with at most L@J
3-faces. Otherwise, v is adjacent to two 2-vertices and incident with at most LW]

3-faces. So ch'(v) > ch(v) — (1+ L@J) x 1 > 0. Hence we complete the proof of the
theorem. 0
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