The Eighth International Symposium on Operations Research and Its Applications (ISORA'09) Zhangjiajie, China, September 20–22, 2009 Copyright © 2009 ORSC & APORC, pp. 174–178

A Note on The Linear Arboricity of Planar Graphs without 4-Cycles*

Jian-Liang Wu¹ Jian-Feng Hou¹ Xiang-Yong Sun²

¹School of Mathematics, Shandong University, Jinan, Shandong 250100, China
 ²School of Stat. and Math., Shandong Economic University, Jinan, Shandong 250014, China

Abstract The linear arboricity la(G) of a graph *G* is the minimum number of linear forests which partition the edges of *G*. In this paper, it is proved that if *G* is a planar graph with $\Delta(G) \ge 5$ and without 4-cycles, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$. Moreover, the bound that $\Delta(G) \ge 5$ is sharp.

Keywords planar graph, linear arboricity, cycle.

1 Introduction

In this paper, all graphs are finite, simple and undirected. Given a graph G = (V, E). Let $N(v) = \{u | uv \in E(G)\}$ and $N_k(v) = \{u | u \in N(v) \text{ and } d(u) = k\}$, where d(v) = |N(v)| is the *degree* of the vertex v. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum (vertex) degree and the minimum (vertex) degree, respectively. A k-, k^+ - or k^- -vertex is a vertex of degree k, at least k, or at most k, respectively. For a real number x, $\lceil x \rceil$ is the least integer not less than x and |x| is the largest integer not larger than x.

A *linear forest* is a graph such that each of its components is a path. A map φ from E(G) of a graph G to $\{1, 2, ..., t\}$ is called a *t*-linear coloring if the induced subgraph of edges having the same color *i* is a linear forest for any $i(1 \le i \le t)$. The *linear arboricity* la(G) of G defined by Harary [2] is the minimum number t for which G has a t-linear coloring.

Akiyama, Exoo, and Harary [1] conjectured that $la(G) = \lceil (\Delta(G) + 1)/2 \rceil$ for any regular graph *G*. It is obvious that $la(G) \ge \lceil \Delta(G)/2 \rceil$ for any graph *G* and $la(G) \ge \lceil (\Delta(G) + 1)/2 \rceil$ for every regular graph *G*. Hence the conjecture is equivalent to the following conjecture.

Conjecture A. For any graph G, $\lceil \frac{\Delta(G)}{2} \rceil \le la(G) \le \lceil \frac{\Delta(G)+1}{2} \rceil$.

The linear arboricity has been determined for some class of graphs (see [4]). Conjecture A has already been proved to be true for all planar graphs, see [3] and [5]. Wu [3] proved that for a planar graph *G* with girth *g* and maximum degree Δ , $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$ if $\Delta \ge 13$, or $\Delta \ge 7$ and $g \ge 4$, or $\Delta \ge 5$ and $g \ge 5$, or $\Delta \ge 3$ and $g \ge 6$. In [4], It is proved that if *G*

^{*}This work was partially supported by National Natural Science Foundation of China(10471078, 10631070, 60673059).

is a planar graph with $\Delta(G) \ge 7$ and without 4-cycles, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$. In this paper, we improve the result and obtain the following result.

Theorem 1.

If G is a planar graph with $\Delta(G) \geq 5$ and without 4-cycles, then $la(G) = \lceil \frac{\Delta(G)}{2} \rceil$.

The theorem is a corollary of Theorem 2. Let *G* be the line graph of a 3-regular planar graph of girth 5, e. g. the line graph of dodecahedron. It is easy to prove that *G* is the 4-regular planar graph without 4-cycles and it follows that la(G) = 3. So the bound that $\Delta(G) \ge 5$ in Theorem 1 is sharp.

2 Main Result and its proof

Given a *t*-linear coloring φ and a vertex *v* of a graph *G*, we denote $C_{\varphi}^{i}(v)$ the set of colors appears *i* times at *v*, where i = 0, 1, 2. Then $|C_{\varphi}^{0}(v)| + |C_{\varphi}^{1}(v)| + |C_{\varphi}^{2}(v)| = t$ and $|C_{\varphi}^{1}(v)| + 2|C_{\varphi}^{2}(v)| = d(v)$, so that

$$2|C_{\phi}^{0}(v)| + |C_{\phi}^{1}(v)| = 2t - d(v).$$
⁽¹⁾

If a color $i \in C_{\varphi}^{1}(v)$, then denote by (v,i) the edge colored with *i* and incident with *v*. For any two vertices *u* and *v*, let $C_{\varphi}(u,v) = C_{\varphi}^{2}(u) \cup C_{\varphi}^{2}(v) \cup (C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v))$, that is, $C_{\varphi}(u,v)$ is the set of colors that appear at least two times at *u* and *v*. A *monochromatic path* is a path of whose edges receive the same color. For two different edges e_1 and e_2 of *G*, they are said to be in the *same color component*, denoted $e_1 \leftrightarrow e_2$, if there is a monochromatic path of *G* connecting them. Furthermore, if two ends of e_i are known, that is, $e_i = x_i y_i$ (i = 1, 2), then $x_1y_1 \leftrightarrow x_2y_2$ denotes more accurately that there is a monochromatic path from x_1 to y_2 passing the edges x_1y_1 and x_2y_2 in *G*(that is, y_1 and x_2 are internal vertices in the path). Otherwise, we use $x_1y_1 \nleftrightarrow x_2y_2$ (or $e_1 \nleftrightarrow e_2$) to denote that such monochromatic path passing them does not exist. Note that $x_1y_1 \leftrightarrow x_2y_2$ and $x_1y_1 \leftrightarrow y_2x_2$ are different.

Theorem 2.

Suppose that $t \ge 3$ is an integer and G is a planar graph with maximum degree $\Delta(G) \le 2t$ and without 4-cycles. Then G has a t-linear coloring.

Proof. Let G = (V, E) be a minimal counterexample to the theorem, and we assume that *G* has been embedded in the plane. A face of *G* is said to be *incident* with all edges and vertices on its boundary. The degree of a face *f*, denote by d(f), is the number of edges incident with it, where each cut-edge is counted twice. A k-, k^+ - or k^- -face is face of degree *k*, at least *k* or at most *k*, respectively. Two faces sharing an edge *e* are said to be *ad jacent*. Let $L = \{1, 2, \dots, t\}$ be the color set. First, we prove some claims for *G*.

Claim 1. *For any* $uv \in E(G)$, $d_G(u) + d_G(v) \ge 2t + 2 \ge 8$.

Proof of Claim 1. Suppose that *G* has an edge *uv* with $d_G(u) + d_G(v) \le 2t + 1$. Then G' = G - uv has a *t*-linear coloring φ by the minimality of *G*. Since $d_{G'}(u) + d_{G'}(v) = d(u) + d(v) - 2 \le 2t - 1$, $|C_{\varphi}(u, v)| < t$. Now we color *uv* with a color from $L \setminus C_{\varphi}(u, v)$. Thus φ is extended to a *t*-linear coloring of *G*, a contradiction.

By the claim, we have

(1) $\delta(G) \ge 2$, and

176

- (2) any two 3^- -vertices are not adjacent, and
- (3) any 3-face is incident with three 4⁺-vertices, or one 3⁻-vertex and two 5⁺-vertices.

Claim 2. Every vertex is adjacent to at most two 2-vertices. At the same time, if a vertex v is adjacent to two 2-vertices, then for any 2-vertex x incident with v, $N(x) = \{v, x'\}$, we have $x'v \notin E(G)$.

Proof of Claim 2. Suppose, to be contrary, that *G* does contain a vertex *v* that it is adjacent to three 2-vertices *x*, *y*, *z*. let x', y', z' be the other neighbors of *x*, *y*, *z*, respectively. Since *G* is minimal, $G^* = G - vx$ has a *t*-linear coloring φ . Without loss of generality, assume $\varphi(xx') = 1$. If there is a color *c* such that $c \in C^0_{\varphi}(v)$, or $c \in C^1_{\varphi}(v) \setminus \{1\}$, or $c = 1 \in C^1_{\varphi}(v)$ but $xx' \not\leftrightarrow (v, 1)$, then color directly vx with *c*. So $C^0_{\varphi}(v) = \emptyset$, $C^1_{\varphi}(v) = \{1\}$ and $xx' \leftrightarrow (v, 1)$. This implies that $\varphi(vy) \neq 1$ or $\varphi(vz) \neq 1$. Assume that $\varphi(vy) \neq 1$. Thus we can recolor *vy* with 1 and color *vx* with $\varphi(vy)$ (Note that if $\varphi(yy') = 1$, then $yy' \not\leftrightarrow x'x$). So φ is extended to a *t*-linear coloring of *G*, a contradiction. Hence every vertex is adjacent to at most two 2-vertices.

Now suppose that there is a vertex v such that v is adjacent to two 2-vertices x, y and two neighbors of y are adjacent. Let $\{x'\} = N(x) \setminus v$, $\{y'\} = N(y) \setminus v$. Then $y'v \in E(G)$. Since G is minimal, $G^* = G - vx$ has a t-linear coloring φ . Without loss of generality, assume $\varphi(xx') = 1$. It follows from the above argument that we have $C_{\varphi}^{0}(v) = \emptyset$, $C_{\varphi}^{1}(v) = \{1\}$ and $xx' \leftrightarrow (v, 1)$. If $\varphi(vy) = 1$, then $\varphi(yy') = 1$ (since $xx' \leftrightarrow (v, 1)$) and it follows that we can recolor vy', vy with 1, yy' with $\varphi(vy')$, and color vx with $\varphi(vy')$. Otherwise, we can recolor vy with 1 and color vx with $\varphi(vy)$. Thus we obtain a t-linear coloring of G, a contradiction. We complete the proof of Claim 2.

Claim 3. For every 3-face uvwu, $\max\{d(u), d(v), d(w)\} \ge 5$.

Proof of Claim 3. Suppose, to be contrary, that there is a 3-face *uvwu* such that $\max\{d(u), d(v), d(w)\} \le 4$. By Claim 1, we have d(u) = d(v) = d(w) = 4. Since *G* is minimal, G' = G - uv has a *t*-linear coloring φ . If there is a color α such that $\alpha \notin C_{\varphi}(u, v)$, or $\alpha \in C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)$ but $(u, \alpha) \not\leftrightarrow (v, \alpha)$, then we can color *uv* with α to obtain a *t*-linear coloring of *G*, a contradiction. So $C_{\varphi}(u, v) = L$, and for any $\alpha \in C_{\varphi}^{1}(u) \cap C_{\varphi}^{1}(v)$, we have $(u, \alpha) \leftrightarrow (v, \alpha)$. Since $d_{G'}(u) = d_{G'}(v) = 3$, $L = \{1, 2, 3\}$ and $\max\{C_{\varphi}^{2}(u), C_{\varphi}^{2}(v)\} \le 1$.

Suppose that $\varphi(uw) = \varphi(vw)$. Without loss of generality, assume that $\varphi(uw) = 1$. If $|C_{\varphi}^{2}(u)| = 0$, then we can recolor *uw* with a color from $\{2,3\}\setminus C_{\varphi}^{2}(w)$, and color *uv* with 1. Otherwise, assume that $C_{\varphi}^{2}(u) = \{2\}$. It follows that $C_{\varphi}^{2}(v) = \{3\}$. Since d(w) = 4, $|C_{\varphi}^{2}(w)| \leq 2$. Without loss of generality, assume that $3 \notin C_{\varphi}^{2}(w)$. Thus, we can recolor *uw* with 3, color *uv* with 1.

Suppose that $\varphi(uw) \neq \varphi(vw)$. Without loss of generality, assume that $\varphi(uw) = 1$ and $\varphi(vw) = 2$. If $1 \in C^2_{\varphi}(u)$, then $2 \in C^2_{\varphi}(v)$, and then we can recolor *vw* with 1, *uw* with 2 and color *uv* with 1. Otherwise, $C^2_{\varphi}(w) = \{1,2\}$ and we can recolor *uw* with 3, color *uv* with 1.

By the above steps, φ is extended to a *t*-linear coloring of *G*, a contradiction. Hence Claim 3 is true.

By Euler's formula |V(G)| - |E(G)| + |F(G)| = 2, we have

$$\sum_{v \in V} (d(v) - 4) + \sum_{f \in F} (d(f) - 4) = -4(|V(G)| - |E(G)| + |F(G)|) = -8 < 0.$$

We define *ch* to be the *initial charge* by ch(x) = d(x) - 4 for each $x \in V(G) \cup F(G)$. In the following, we will reassign a new charge denoted by ch'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules below. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -8.$$
(*)

If we can show that $ch'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, then we obtain a contradiction to (*), completing the proof. The discharging rules are defined as follows.

R1. Let *f* be a 3-face *uvwu* with $d(u) \le d(v) \le d(w)$. If d(u) = d(v) = 4, then *f* receives $\frac{1}{4}$ from each of *u* and *v*, receives $\frac{1}{2}$ from *w*. Otherwise, *f* receives $\frac{1}{2}$ from each of *v* and *w*.

R2. Let z be a 2-vertex. First, it receives $\frac{1}{2}$ from each of its neighbors. Then, if z is incident with a 3-face f, then it receives 1 from its incident 6⁺-face. Otherwise, it receives $\frac{1}{2}$ from each of its incident faces.

R3. Let z be a 3-vertex. z receives $\frac{1}{2}$ from each of its incident 5⁺-faces.

R4. Let z be a 4-vertex. Let f be a 5⁺-face and z_1, z_2 be two neighbors of z incident with f. If $d(z_1) = d(z_2) = 4$, then z receives $\frac{1}{5}$ from f. Otherwise, if min $\{d(z_1), d(z_2)\} \ge 5$, then z receives $\frac{1}{3}$ from f. Otherwise, z receives $\frac{1}{4}$ from f.

Let *f* be a face of *G*. If d(f) = 3. then $ch'(f) \ge ch(f) + \max\{2 \times \frac{1}{4} + \frac{1}{2}, 2 \times \frac{1}{2}, 3 \times \frac{1}{3}\} = 0$. If d(f) = 4, then ch'(f) = ch(f) = 0. Suppose that d(f) = 5. If *f* is incident with at most two 4⁻-vertices, then $ch'(f) \ge ch(f) - 2 \times \frac{1}{2} = 0$ by R1-R4. Otherwise, there are two adjacent 4⁻-vertices u, v incident with *f*, and it follows from Claim 1 that d(u) = d(v) = 4. Thus, if *f* is incident with a 3⁻-vertex *w*, then two neighbors of *w* incident with *f* must be 5⁺-vertices, and it follows that $ch'(f) \ge ch(f) - \frac{1}{2} - 2 \times \frac{1}{4} = 0$ by R2-R4. Otherwise, all 4⁻-vertices incident with *f* are 4-vertices, and it follows from R4 that $ch'(f) \ge ch(f) - \max\{\frac{1}{3} + 2 \times \frac{1}{4}, 5 \times \frac{1}{5}\} = 0$. Suppose that $d(f) \ge 6$. Let *a* be the number of 2-vertices incident with *f* and a 3-face. Then $a \le \lfloor (d(f) - 2)/3 \rfloor$ by Claim 2. Let *b* be the number of 4-vertices incident with *f* is at most d(f) - 2(a+b) + 1. So $ch'(f) \ge ch(f) - a - b \times \frac{1}{2} - (d(f) - 2(a+b) + 1) \times \frac{1}{3} \ge 0$.

Let v be a vertex of G. If d(v) = 2, then $ch'(v) = ch(v) + 2 \times \frac{1}{2} + \min\{1, 2 \times \frac{1}{2}\} = 0$ by R2. If d(v) = 3, then $ch'(v) = ch(v) + \min\{2 \times \frac{1}{2}, 3 \times \frac{1}{3}\} = 0$ by R3. If d(v) = 4, then $ch'(v) \ge ch(v) + \min\{\frac{1}{5} + \frac{1}{3}, 2 \times \frac{1}{4}\} - 2 \times \frac{1}{4} = 0$ by R3. If d(v) = 5, then it is incident with at most two 3-faces and it follows that $ch'(v) \ge ch(v) - 2 \times \frac{1}{2} = 0$ by R1. Suppose that $d(v) \ge 6$. If v is adjacent to at most one 2-vertex, then v is incident with at most $\lfloor \frac{d(v)}{2} \rfloor$ 3-faces. Otherwise, v is adjacent to two 2-vertices and incident with at most $\lfloor \frac{d(v)-2}{2} \rfloor$ 3-faces. So $ch'(v) \ge ch(v) - (1 + \lfloor \frac{d(v)}{2} \rfloor) \times \frac{1}{2} \ge 0$. Hence we complete the proof of the theorem.

References

- [1] J. Akiyama, G. Exoo and F. Harary, *Covering and packing in graphs III: Cyclic and acyclic invariants*, Math. Slovaca, 30(1980), pp. 405-417.
- [2] F. Harary, Covering and packing in graphs I, Ann. N.Y. Acad. Sci. 175(1970), pp. 198-205.
- [3] J. L. Wu, On the linear arboricity of planar graphs, J. Graph Theory, 31(1999), pp. 129-134.
- [4] J. L. Wu, J. F. Hou and G. Z. Liu, *The linear arboricity of planar graphs with no short cycles*, Theoretical Computer Science, 381(2007), pp. 230-233.
- [5] J. L. Wu and Y. W. Wu, *The linear arboricity of planar graphs of maximum degree seven are four*, J. Graph Theory, 58(2008), 210-220.