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Abstract The linear arboricity la(G) of a graph G is the minimum number of linear forests which
partition the edges of G. In this paper, it is proved that if G is a planar graph with ∆(G) ≥ 5 and
without 4-cycles, then la(G) = ⌈∆(G)

2 ⌉. Moreover, the bound that ∆(G)≥ 5 is sharp.
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1 Introduction
In this paper, all graphs are finite, simple and undirected. Given a graph G = (V,E).

Let N(v) = {u ∣uv ∈ E(G)} and Nk(v) = {u ∣u ∈ N(v) and d(u) = k}, where d(v) = ∣N(v)∣
is the degree of the vertex v. We use ∆(G) and δ (G) to denote the maximum (vertex)
degree and the minimum (vertex) degree, respectively. A k-, k+- or k−-vertex is a vertex
of degree k, at least k, or at most k, respectively. For a real number x, ⌈x⌉ is the least
integer not less than x and ⌊x⌋ is the largest integer not larger than x.

A linear f orest is a graph such that each of its components is a path. A map φ from
E(G) of a graph G to {1,2, . . . , t} is called a t-linear coloring if the induced subgraph of
edges having the same color i is a linear forest for any i(1 ≤ i ≤ t). The linear arboricity
la(G) of G defined by Harary [2] is the minimum number t for which G has a t-linear
coloring.

Akiyama, Exoo, and Harary [1] conjectured that la(G) = ⌈(∆(G) + 1)/2⌉ for any
regular graph G. It is obvious that la(G) ≥ ⌈∆(G)/2⌉ for any graph G and la(G) ≥
⌈(∆(G) + 1)/2⌉ for every regular graph G. Hence the conjecture is equivalent to the
following conjecture.

Conjecture A. For any graph G, ⌈∆(G)
2 ⌉ ≤ la(G)≤ ⌈∆(G)+1

2 ⌉.

The linear arboricity has been determined for some class of graphs (see [4]). Conjecture
A has already been proved to be true for all planar graphs, see [3] and [5]. Wu [3] proved
that for a planar graph G with girth g and maximum degree ∆, la(G) = ⌈∆(G)

2 ⌉ if ∆ ≥ 13,
or ∆ ≥ 7 and g ≥ 4, or ∆ ≥ 5 and g ≥ 5, or ∆ ≥ 3 and g ≥ 6. In [4], It is proved that if G
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is a planar graph with ∆(G)≥ 7 and without 4-cycles, then la(G) = ⌈∆(G)
2 ⌉. In this paper,

we improve the result and obtain the following result.

Theorem 1.
If G is a planar graph with ∆(G)≥ 5 and without 4-cycles, then la(G) = ⌈∆(G)

2 ⌉.

The theorem is a corollary of Theorem 2. Let G be the line graph of a 3-regular planar
graph of girth 5, e. g. the line graph of dodecahedron. It is easy to prove that G is the
4-regular planar graph without 4-cycles and it follows that la(G) = 3. So the bound that
∆(G)≥ 5 in Theorem 1 is sharp.

2 Main Result and its proof
Given a t-linear coloring φ and a vertex v of a graph G, we denote Ci

φ(v) the set of
colors appears i times at v, where i = 0,1,2. Then ∣C0

φ(v)∣+ ∣C1
φ(v)∣+ ∣C2

φ(v)∣ = t and
∣C1

φ(v)∣+2∣C2
φ(v)∣= d(v), so that

2∣C0
φ(v)∣+ ∣C1

φ(v)∣= 2t −d(v). (1)

If a color i ∈C1
φ(v), then denote by (v, i) the edge colored with i and incident with v. For

any two vertices u and v, let Cφ(u,v) =C2
φ(u)∪C2

φ(v)∪ (C1
φ(u)∩C1

φ(v)), that is, Cφ(u,v)
is the set of colors that appear at least two times at u and v. A monochromatic path is a
path of whose edges receive the same color. For two different edges e1 and e2 of G, they
are said to be in the same color component, denoted e1 ↔ e2, if there is a monochromatic
path of G connecting them. Furthermore, if two ends of ei are known, that is, ei = xiyi
(i = 1,2), then x1y1 ↔ x2y2 denotes more accurately that there is a monochromatic path
from x1 to y2 passing the edges x1y1 and x2y2 in G( that is, y1 and x2 are internal vertices in
the path). Otherwise, we use x1y1 ∕↔ x2y2( or e1 ∕↔ e2) to denote that such monochromatic
path passing them does not exist. Note that x1y1 ↔ x2y2 and x1y1 ↔ y2x2 are different.

Theorem 2.
Suppose that t ≥ 3 is an integer and G is a planar graph with maximum degree ∆(G)≤ 2t
and without 4-cycles. Then G has a t-linear coloring.

Proof. Let G = (V,E) be a minimal counterexample to the theorem, and we assume that
G has been embedded in the plane. A face of G is said to be incident with all edges and
vertices on its boundary. The degree of a face f , denote by d( f ), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k+- or k−-face is face of
degree k, at least k or at most k, respectively. Two faces sharing an edge e are said to be
ad jacent. Let L = {1,2, ⋅ ⋅ ⋅ , t} be the color set. First, we prove some claims for G.

Claim 1. For any uv ∈ E(G), dG(u)+dG(v)≥ 2t +2 ≥ 8.

Proof of Claim 1. Suppose that G has an edge uv with dG(u)+dG(v)≤ 2t +1. Then
G′ = G− uv has a t-linear coloring φ by the minimality of G. Since dG′(u)+ dG′(v) =
d(u)+d(v)−2 ≤ 2t −1, ∣Cφ(u,v)∣ < t. Now we color uv with a color from L∖Cφ(u,v).
Thus φ is extended to a t-linear coloring of G, a contradiction. □

By the claim, we have
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(1) δ (G)≥ 2, and
(2) any two 3−-vertices are not adjacent, and
(3) any 3-face is incident with three 4+-vertices, or one 3−-vertex

and two 5+-vertices.

Claim 2. Every vertex is adjacent to at most two 2-vertices. At the same time, if a
vertex v is adjacent to two 2-vertices, then for any 2-vertex x incident with v, N(x) =
{v,x′}, we have x′v ∕∈ E(G).

Proof of Claim 2. Suppose, to be contrary, that G does contain a vertex v that it is
adjacent to three 2-vertices x,y,z. let x′,y′,z′ be the other neighbors of x,y,z, respectively.
Since G is minimal, G∗ = G− vx has a t-linear coloring φ . Without loss of generality,
assume φ(xx′) = 1. If there is a color c such that c ∈ C0

φ(v), or c ∈ C1
φ(v)∖{1}, or c =

1 ∈C1
φ(v) but xx′ ∕↔ (v,1), then color directly vx with c. So C0

φ(v) = /0, C1
φ(v) = {1} and

xx′ ↔ (v,1). This implies that φ(vy) ∕= 1 or φ(vz) ∕= 1. Assume that φ(vy) ∕= 1. Thus we
can recolor vy with 1 and color vx with φ(vy) ( Note that if φ(yy′) = 1, then yy′ ∕↔ x′x). So
φ is extended to a t-linear coloring of G, a contradiction. Hence every vertex is adjacent
to at most two 2-vertices.

Now suppose that there is a vertex v such that v is adjacent to two 2-vertices x,y and
two neighbors of y are adjacent. Let {x′} = N(x)∖v, {y′} = N(y)∖v. Then y′v ∈ E(G).
Since G is minimal, G∗ = G− vx has a t-linear coloring φ . Without loss of generality,
assume φ(xx′) = 1. It follows from the above argument that we have C0

φ(v) = /0, C1
φ(v) =

{1} and xx′ ↔ (v,1). If φ(vy) = 1, then φ(yy′) = 1 (since xx′ ↔ (v,1)) and it follows that
we can recolor vy′,vy with 1, yy′ with φ(vy′), and color vx with φ(vy′). Otherwise, we
can recolor vy with 1 and color vx with φ(vy). Thus we obtain a t-linear coloring of G, a
contradiction. We complete the proof of Claim 2. □

Claim 3. For every 3-face uvwu, max{d(u),d(v),d(w)} ≥ 5.

Proof of Claim 3. Suppose, to be contrary, that there is a 3-face uvwu such that
max{d(u),d(v),d(w)} ≤ 4. By Claim 1, we have d(u) = d(v) = d(w) = 4. Since G is
minimal, G′ =G−uv has a t-linear coloring φ . If there is a color α such that α ∕∈Cφ(u,v),
or α ∈C1

φ(u)∩C1
φ(v) but (u,α) ∕↔ (v,α), then we can color uv with α to obtain a t-linear

coloring of G, a contradiction. So Cφ(u,v) = L, and for any α ∈C1
φ(u)∩C1

φ(v), we have
(u,α)↔ (v,α). Since dG′(u) = dG′(v) = 3, L = {1,2,3} and max{C2

φ(u),C
2
φ(v)} ≤ 1.

Suppose that φ(uw) = φ(vw). Without loss of generality, assume that φ(uw) = 1. If
∣C2

φ(u)∣ = 0, then we can recolor uw with a color from {2,3}∖C2
φ(w), and color uv with

1. Otherwise, assume that C2
φ(u) = {2}. It follows that C2

φ(v) = {3}. Since d(w) = 4,
∣C2

φ(w)∣ ≤ 2. Without loss of generality, assume that 3 ∕∈C2
φ(w). Thus, we can recolor uw

with 3, color uv with 1.
Suppose that φ(uw) ∕= φ(vw). Without loss of generality, assume that φ(uw) = 1 and

φ(vw) = 2. If 1 ∈ C2
φ(u), then 2 ∈ C2

φ(v), and then we can recolor vw with 1, uw with 2
and color uv with 1. Otherwise, C2

φ(w) = {1,2} and we can recolor uw with 3, color uv
with 1.

By the above steps, φ is extended to a t-linear coloring of G, a contradiction. Hence
Claim 3 is true. □
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By Euler’s formula ∣V (G)∣− ∣E(G)∣+ ∣F(G)∣= 2, we have

∑
v∈V

(d(v)−4)+ ∑
f∈F

(d( f )−4) =−4(∣V (G)∣− ∣E(G)∣+ ∣F(G)∣) =−8 < 0.

We define ch to be the initial charge by ch(x) = d(x)− 4 for each x ∈ V (G)
∪

F(G). In
the following, we will reassign a new charge denoted by ch′(x) to each x ∈V (G)∪F(G)
according to the discharging rules below. Since our rules only move charges around, and
do not affect the sum, we have

∑
x∈V (G)∪F(G)

ch′(x) = ∑
x∈V (G)∪F(G)

ch(x) =−8. (∗)

If we can show that ch′(x)≥ 0 for each x ∈V (G)∪F(G), then we obtain a contradiction
to (∗), completing the proof. The discharging rules are defined as follows.

R1. Let f be a 3-face uvwu with d(u) ≤ d(v) ≤ d(w). If d(u) = d(v) = 4, then f
receives 1

4 from each of u and v, receives 1
2 from w. Otherwise, f receives 1

2 from each of
v and w.

R2. Let z be a 2-vertex. First, it receives 1
2 from each of its neighbors. Then, if z is

incident with a 3-face f , then it receives 1 from its incident 6+-face. Otherwise, it receives
1
2 from each of its incident faces.

R3. Let z be a 3-vertex. z receives 1
2 from each of its incident 5+-faces.

R4. Let z be a 4-vertex. Let f be a 5+-face and z1,z2 be two neighbors of z incident
with f . If d(z1) = d(z2) = 4, then z receives 1

5 from f . Otherwise, if min{d(z1),d(z2)} ≥
5, then z receives 1

3 from f . Otherwise, z receives 1
4 from f .

Let f be a face of G. If d( f ) = 3. then ch′( f ) ≥ ch( f )+max{2× 1
4 +

1
2 ,2× 1

2 ,3×
1
3} = 0. If d( f ) = 4, then ch′( f ) = ch( f ) = 0. Suppose that d( f ) = 5. If f is incident
with at most two 4−-vertices, then ch′( f ) ≥ ch( f )− 2× 1

2 = 0 by R1-R4. Otherwise,
there are two adjacent 4−-vertices u,v incident with f , and it follows from Claim 1 that
d(u) = d(v) = 4. Thus, if f is incident with a 3−-vertex w, then two neighbors of w
incident with f must be 5+-vertices, and it follows that ch′( f ) ≥ ch( f )− 1

2 − 2× 1
4 = 0

by R2-R4. Otherwise, all 4−-vertices incident with f are 4-vertices, and it follows from
R4 that ch′( f )≥ ch( f )−max{ 1

3 +2× 1
4 ,5× 1

5}= 0. Suppose that d( f )≥ 6. Let a be the
number of 2-vertices incident with f and a 3-face. Then a ≤ ⌊(d( f )−2)/3⌋ by Claim 2.
Let b be the number of 3−-vertices which receive 1

2 from f . Then b ≤ ⌊(d( f )− 2a)/2⌋
by Claim 1. The number of 4-vertices incident with f is at most d( f )−2(a+b)+1. So
ch′( f )≥ ch( f )−a−b× 1

2 − (d( f )−2(a+b)+1)× 1
3 ≥ 0.

Let v be a vertex of G. If d(v) = 2, then ch′(v) = ch(v)+2× 1
2 +min{1,2× 1

2} = 0
by R2. If d(v) = 3, then ch′(v) = ch(v)+min{2× 1

2 ,3× 1
3}= 0 by R3. If d(v) = 4, then

ch′(v)≥ ch(v)+min{ 1
5 +

1
3 ,2× 1

4}−2× 1
4 = 0 by R3. If d(v) = 5, then it is incident with

at most two 3-faces and it follows that ch′(v) ≥ ch(v)− 2× 1
2 = 0 by R1. Suppose that

d(v) ≥ 6. If v is adjacent to at most one 2-vertex, then v is incident with at most ⌊ d(v)
2 ⌋

3-faces. Otherwise, v is adjacent to two 2-vertices and incident with at most ⌊ d(v)−2
2 ⌋

3-faces. So ch′(v) ≥ ch(v)− (1+ ⌊ d(v)
2 ⌋)× 1

2 ≥ 0. Hence we complete the proof of the
theorem.
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