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Abstract Let G be a planar graph with maximum degree A. It’s proved that if A > 8 and G does
not contain adjacent 4-cycles, then the total chromatic number ) ' (G)=A+1.
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1 Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation
follows that of Bondy and Murty [2]. Let G be a graph, We use V(G), E(G), A(G) and
0(G) (or simply V, E, A and §) to denote the vertex set, the edge set, the maximum(vertex)
degree and the minimum (vertex) degree of G, respectively. A k-, k™- or k™- vertex is a
vertex of degree k, at least k, or at most k, respectively.

A total-k-coloring of a graph G is a coloring of V U E using k colors such that no
two adjacent or incident elements receive the same color. The fotal chromatic number
)(”(G) of G is the smallest integer k such that G has a total-k-coloring. It’s clear that
%" (G) > A+ 1. Behzad [1] and Vizing [13] conjectured that ¥ (G) < A+ 2 for each
graph G. This conjecture was verified by Rosenfeld [9] and Vijayaditya [12] for A =3
and by Kostochka [8] for A < 5. In 1989, Sanchez-Arroyo [11] proved that deciding
whether x"(G) = A+ 1 is NP-complete. But For planar graphs with large maximum
degree, it is possible to determine x”(G) precisely. It is shown that x”(G) =A+1ifG
is a planar graph with A > 11 [3] and A = 10 [14] and A =9 [7]. Borodin et al. [4] also
obtained several related results by adding girth restrictions. Hou et al. [6] proved that if G
is a planar graph with A > 8 and without i-cycles for some i € {5,6}, then x” (G)=A+1.
Recently D.Z. Du, L. Shen and Y.Q. Wang [5] also proved that if G is a planar graph
with A > 8 and without adjacent 3-cycles, then x' (G) = A+ 1. In this paper, we get the
following theorem.

Theorem 1. Let G be a planar graph with A(G) > 8. If G does not contain adjacent
4-cycles, then x" (G) = A+ 1.
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Let us introduce some notations and definitions. Let G = (V,E, F) be a planar graph,
where F is the set of faces of G. The degree of f, denoted by d(f), is the number of
edges incident with it. A k-, k- or k™ -face is a face of degree k, at least k or at most k,
respectively. Let 8(f) denote the minimum degree of vertices incident with f. We say
that two cycles are adjacent if they share at least one edge. For v € V(G), we use n;(v)
to denote the number of i-vertices which are adjacent to v, f;(v) to denote the number of
i-faces incident with v. The vertex marked by e denotes it has no other neighbors in G.

2 Proof of Theorem 1

Proof of Theorem 1. It suffices to consider the case that A(G) = 8 by [7]. Let
G = (V,E,F) be a minimal counterexample to the theorem in terms of vertices and edges.
Then every proper subgraph of G is total-9-colorable. Let L be the color set {1,2,...,9}
for simplicity. It’s easy to see that G is 2-connected, and hence has no vertices of degree 1
and the boundary of each face f is exactly a cycle(i.e., b(f) can not pass through a vertex
v more than once). First we prove some lemmas for G.

Lemma 1. (a) For any uv € E(G), dg(u) +dg(v) > A+2 > 10.
(b) The subgraph induced by all (2,6)-edges in G is a forest.

The proof of Lemma 1 can be found in [3].

By Lemma 1, we have that the two neighbors of a 2-vertex are 8-vertices; any two
4~ -vertices are not adjacent; any 3-face is incident with three 5" -vertices, or at least two
67" -vertices. Let G, be the subgraph induced by the edges incident with the 2-vertices of
G. In each component T of Gy, if |V(T)| > 4, then there is a matching M in T which
saturating all 2-vertices. If uv € M and d(u) = 2, v is called the general 2-master of u.
Otherwise, T is a path vivv, where d(v) = 2 and v; is adjacent to exactly one 2-vertex for
i =1, 2. In this case, the vertex v; is called the special 2-master of v fori =1, 2.

Lemma 2. G contains no subgraph isomorphic to the configuration in Figure 1(a)-(e).

The proof of (a) and (d) can be found in [10], (b) and (c) can be found in [14], And
(e) can be found in [5].

Lemma 3. G contains no subgraph isomorphic to the configuration in Figure 2(a).

proof. On the contrary, suppose G contains the configuration in 2(a). by the mini-
mality of G, G’ = G — uv has a proper total-9-coloring ¢. For each element x € VUE,
Let C(x) denotes the set of colors of vertices and edges incident or adjacent to x. Since
|C(v)| < 6 for each 3™ -vertex, we suppose that such vertices are colored at the very end.
We have |C(uv)| =9, Since otherwise there exists a color o € L\ C(uv), we can color uv
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Figure 1 Reducible Configuration

with o to obtain a total-9-coloring of G, a contradiction. Without loss of generality, we
can assume that the coloring is one of the Figure 2(b). If ¢(wx) # 9, then we can recolor
uw with 9, and color uv with ¢(uw) to obtain a total-9-coloring of G, a contradiction, so
@(wx) = 9. Similarly, we can prove that ¢(zy) = 9. If ¢(xy) # 2, we interchange the
colors of the edges wx and xy, and recolor yz with ¢(xy), recolor uw with 9, color uv with
1. Otherwise, we can interchange the colors of the edges wx and xy, and recolor yz with
¢(xy), recolor uz with 9, color uv with 2. So we can get total coloring of G with colors
from L, a contradiction. Hence we complete the proof of Lemma 3.

Lemma 4. Since G contains no adjacent 4-cycles, then the following results hold:
(a) Any 4" -vertex is incident with at most Lzﬂﬂj 3-faces.

(b) Any vertex is incident with at most L@J 4-faces.

By Euler’s formula |V| — |E| 4 |F| = 2, we have

Y (2d(v)-6)+ ) (d(f)—6)=—-12<0. (1)

vevV feF

We define ch to be the initial charge. Let ch(x) = 2d(x) — 6 for each x € V(G) and
ch(x) = d(x) — 6 for each x € F(G). In the following, we will reassign a new charge
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Figure 2 Reducible Configuration

denoted by ¢k (x) to each x € V(G) UF(G) according to the discharging rules. Since our
rules only move charges around, and do not affect the sum, we have

!

ch(x)= Y  ch(x)=-12. )
xEV(G)UF(G) x€V(G)UF(G)

In the following, we will show that ¢/ (x) > 0 for each x € V(G) UF (G), a contradic-
tion to (2), completing the proof.

The discharging rules are defined as follows.

R1-1. Each 2-vertex receives 2 from its general 2-master or receives 1 from each of
its special 2-master.

R1-2. Let f be a 3-face. If 6(f) < 3, then f receives % from each of its incident
71 -vertices. Otherwise, f receives 1 from each of its incident vertices.

R1-3. Let f be a 4-face. If f is incident with two 4~ -vertices, then f receives 1
from each of its incident 67 -vertices. Otherwise, f receives % from each of its incident
5" -vertices.

R1-4. For a 5-face f and its incident vertex v, f receives % ifd(v) > 6, % ifd(v) =5.

let f be a face of G. Clearly, ch'(f) = ch(f) =d(f) —6>0ifd(f) > 6. Ifd(f) =3,
then ch/(f) > ch(f) +min{% x 2,1 x3} =0by R1-2 and Lemma 1. If d(f) = 4, then
el (f) > ch(f) + min{2 x l,% x 3} =0 by R1-3. If d(f) =5, then ch'(f) > ch(f) +
min{$ x 3,1 x5} =0 by R1-4.

Let v be a vertex of G. If d(v) = 2, then ¢k’ (v) = ch(v) +2=0by R1-1. If d(v) =3,
then ch'(v) = ch(v) =0 . If d(v) = 4, then v is incident with at most two 3-faces. And it
follows that c/'(v) > ch(v) —2x 1 =0. If d(v) =5, then ¢/ (v) > ch(v) —max{3+ % x
2,2+% x2+é,l+%x2+% x2} = % > 0. If d(v) = 6, then ¢l (v) > ch(v) —4 x 1 —
2x1=0.1Ifd(v) =7, then f is incident with at most four 3-faces. And if f3(v) = 4, then
f2(v) < 1. Thus ¢h'(v) > ch(v) —max{3 x4+1+1x2,3x3+3+1}=1>0.
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If d(v) = 8, then ch(v) =2 x 8 —6 = 10 and v is incident with at most five 3-faces by
Lemma 4. If v is adjacent to no 2-vertex, then ch’(v) > 10 — max{3 x 5+ % x3,3 x4+
4% 1} =0.

Otherwise, v is adjacent to at least one 2-vertex. we consider the following 4-cases.

Case 1. f3(v) =5.

In this case, v must be a special 2-master by Lemma 2, then ch’(v) > ch(v) — 1 — % X
5—1x3=1>0.

Case 2. f3(v) = 4. Various situations are illustrated in Figure 3.

(@ (b) (c)

(d)

Figure 3

In Figure 3(a)-(c), f4(v) < 1, thench’(v) > ch(v) —2—3 x4 —max{{ x4,1 x3+1} =
0. In Figure 3(d), v must be a special 2-master by Lemma 2, then ¢h’(v) > ch(v) — 1 —
% —3x1-4= % > 0. In figure 3(e), f4(v) < 2.If v is a special 2-master, then ch’(v) >
ch(v)—1—3 x4-2—-1x2=1>0. Otherwise, if f; is a 5-face, then ch'(v) >
ch(v)—2—3 x4—1-1x3=0. If f; is a 4-face, then d(u) > 4 by Lemma 3. And
if 5(f2) >4, then ¢/ (v) > ch(v) —2—3x3—-1-1-%2—-1x2=1>0. Otherwise
d(w)=3,d(u) > 7. In this case, if d(x) = 3, then f3 must be a 5"-face by Lemma 2, thus
ch'(v) > ch(v)—2—3 x4—3 — 1 x3=1>0. Otherwise, ch’(v) > ch(v) —2 —max{3 x
44 Fx241x2,3x3+1+5+145%x2}=0.

Case 3. f3(v) = 3. If vis a special 2-master, then ¢/ (v) > ch(v) — 1 —3 x3—4—1 =
% > 0. We only need to consider the case that v is a general 2-master. Various situations
are illustrated in Figure 4.

In figure 4(a) and 4(b), ch'(v) > ch(v) =2 —3 x3—-2—1x3 =1 >0. In Figure
4(c), without loss of generality, assume d(u) = 2. If f| is a 5" -face, then ch'(v) > ch(v) —
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Figure 4

2—max{3 x3+5+2+4x2,1+3 x2+3+4 5 x2} = ¢ >0. Otherwise, if f] is a
4-face, then d(w) > 4 by Lemma 2 and Lemma 3. In this case, if 6(f>) > 4, then ch’(v) >
ch(v)—2—3x2—1—%-3—1=0. Otherwise, d(x) =3, d(w) > 7. If §(f3) >4,
then ch'(v) > ch(v)—2—3 x2—1-3x2-2—1=1>0.1f §(f4) <3, then c/'(v) >
ch(v) —2—max{3 x3+2x3+1+13x34+2x24+1+1x2} =1 >0. InFigure 4
(d), without loss of generality, assume d(u) = 2. If d(f1) > 35, d(f>2) > 5, then ci'(v) >
10—-2— % x3-2— % x3 = % > 0. Otherwise, assume f, is a 4-face, then d(w) > 4 by
Lemma 2 and Lemma 3. If §(f3) > 4, then ¢k’ (v) > ch(v) —2—3 x2—1-3—-%=1>0.
Otherwise, d(x) =3, d(w) > 7, then ¢/ (v) > ch(v) —2—3 x3-2-2-2=1>0.

Case 4. f3(v) <2.

In this case, ch'(v) > ch(v) —2—3 x2—4 -1 x2=1>0.

In any case, we have ch’(x) > 0 for each element x € V(G) U F(G), a contradiction.
Hence we complete the proof of Theorem 1.
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