The Eighth International Symposium on Operations Research and Its Applications (ISORA'09) Zhangjiajie, China, September 20–22, 2009 Copyright © 2009 ORSC & APORC, pp. 167–173

Total Coloring of Planar Graphs without Adjacent 4-cycles

Xiang Tan^{1,2} Hong-Yu Chen¹ Jian-Liang Wu^{1,*}

¹School of Mathematics, Shandong University, Jinan, Shandong, 250100, China ²School of Statistics and Mathematics, Shandong University of Finance, Jinan, Shandong, 250014, China

Abstract Let *G* be a planar graph with maximum degree Δ . It's proved that if $\Delta \ge 8$ and *G* does not contain adjacent 4-cycles, then the total chromatic number $\chi''(G) = \Delta + 1$.

Keywords planar graph; total coloring; adjacent cycle

1 Introduction

In this paper, all graphs are finite, simple and undirected. Any undefined notation follows that of Bondy and Murty [2]. Let *G* be a graph, We use V(G), E(G), $\Delta(G)$ and $\delta(G)$ (or simply *V*, *E*, Δ and δ) to denote the vertex set, the edge set, the maximum(vertex) degree and the minimum (vertex) degree of *G*, respectively. A *k*-, *k*⁺- or *k*⁻- vertex is a vertex of degree *k*, at least *k*, or at most *k*, respectively.

A *total-k-coloring* of a graph *G* is a coloring of $V \cup E$ using *k* colors such that no two adjacent or incident elements receive the same color. The *total chromatic number* $\chi''(G)$ of *G* is the smallest integer *k* such that *G* has a total-*k*-coloring. It's clear that $\chi''(G) \ge \Delta + 1$. Behzad [1] and Vizing [13] conjectured that $\chi''(G) \le \Delta + 2$ for each graph *G*. This conjecture was verified by Rosenfeld [9] and Vijayaditya [12] for $\Delta = 3$ and by Kostochka [8] for $\Delta \le 5$. In 1989, Sánchez-Arroyo [11] proved that deciding whether $\chi''(G) = \Delta + 1$ is NP-complete. But For planar graphs with large maximum degree, it is possible to determine $\chi''(G)$ precisely. It is shown that $\chi''(G) = \Delta + 1$ if *G* is a planar graph with $\Delta \ge 11$ [3] and $\Delta = 10$ [14] and $\Delta = 9$ [7]. Borodin et al. [4] also obtained several related results by adding girth restrictions. Hou et al. [6] proved that if *G* is a planar graph with $\Delta \ge 8$ and without *i*-cycles for some $i \in \{5, 6\}$, then $\chi''(G) = \Delta + 1$. Recently D.Z. Du, L. Shen and Y.Q. Wang [5] also proved that if *G* is a planar graph with $\Delta \ge 8$ and without 3-cycles, then $\chi''(G) = \Delta + 1$. In this paper, we get the following theorem.

Theorem 1. Let *G* be a planar graph with $\Delta(G) \ge 8$. If *G* does not contain adjacent 4-cycles, then $\chi''(G) = \Delta + 1$.

^{*}Corresponding author. E-mail address: jlwu@sdu.edu.cn

Let us introduce some notations and definitions. Let G = (V, E, F) be a planar graph, where *F* is the set of faces of *G*. The degree of *f*, denoted by d(f), is the number of edges incident with it. A *k*-, *k*⁺- or *k*⁻-face is a face of degree *k*, at least *k* or at most *k*, respectively. Let $\delta(f)$ denote the minimum degree of vertices incident with *f*. We say that two cycles are adjacent if they share at least one edge. For $v \in V(G)$, we use $n_i(v)$ to denote the number of *i*-vertices which are adjacent to *v*, $f_i(v)$ to denote the number of *i*-faces incident with *v*. The vertex marked by • denotes it has no other neighbors in *G*.

2 **Proof of Theorem 1**

Proof of Theorem 1. It suffices to consider the case that $\Delta(G) = 8$ by [7]. Let G = (V, E, F) be a minimal counterexample to the theorem in terms of vertices and edges. Then every proper subgraph of *G* is total-9-colorable. Let *L* be the color set $\{1, 2, ..., 9\}$ for simplicity. It's easy to see that *G* is 2-connected, and hence has no vertices of degree 1 and the boundary of each face *f* is exactly a cycle(i.e., b(f) can not pass through a vertex *v* more than once). First we prove some lemmas for *G*.

Lemma 1. (a) For any $uv \in E(G)$, $d_G(u) + d_G(v) \ge \Delta + 2 \ge 10$. (b) The subgraph induced by all (2,6)-edges in *G* is a forest.

The proof of Lemma 1 can be found in [3].

By Lemma 1, we have that the two neighbors of a 2-vertex are 8-vertices; any two 4⁻-vertices are not adjacent; any 3-face is incident with three 5⁺-vertices, or at least two 6⁺-vertices. Let G_2 be the subgraph induced by the edges incident with the 2-vertices of *G*. In each component *T* of G_2 , if $|V(T)| \ge 4$, then there is a matching *M* in *T* which saturating all 2-vertices. If $uv \in M$ and d(u) = 2, *v* is called the *general 2-master* of *u*. Otherwise, *T* is a path v_1vv_2 where d(v) = 2 and v_i is adjacent to exactly one 2-vertex for i = 1, 2. In this case, the vertex v_i is called the *special 2-master* of *v* for i = 1, 2.

Lemma 2. G contains no subgraph isomorphic to the configuration in Figure 1(a)-(e).

The proof of (a) and (d) can be found in [10], (b) and (c) can be found in [14], And (e) can be found in [5].

Lemma 3. G contains no subgraph isomorphic to the configuration in Figure 2(a).

proof. On the contrary, suppose *G* contains the configuration in 2(a). by the minimality of *G*, G' = G - uv has a proper total-9-coloring φ . For each element $x \in V \cup E$, Let C(x) denotes the set of colors of vertices and edges incident or adjacent to *x*. Since $|C(v)| \leq 6$ for each 3⁻-vertex, we suppose that such vertices are colored at the very end. We have |C(uv)| = 9, Since otherwise there exists a color $\alpha \in L \setminus C(uv)$, we can color uv

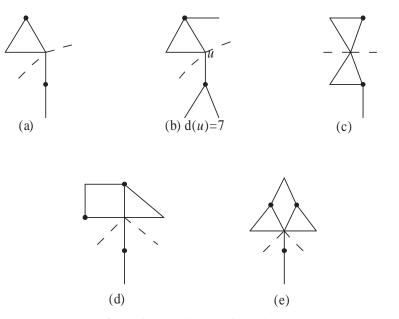


Figure 1 Reducible Configuration

with α to obtain a total-9-coloring of *G*, a contradiction. Without loss of generality, we can assume that the coloring is one of the Figure 2(b). If $\varphi(wx) \neq 9$, then we can recolor *uw* with 9, and color *uv* with $\varphi(uw)$ to obtain a total-9-coloring of *G*, a contradiction, so $\varphi(wx) = 9$. Similarly, we can prove that $\varphi(zy) = 9$. If $\varphi(xy) \neq 2$, we interchange the colors of the edges *wx* and *xy*, and recolor *yz* with $\varphi(xy)$, recolor *uw* with 9, color *uv* with 1. Otherwise, we can interchange the colors of the edges *wx* and *xy*, and recolor *sy* with $\varphi(xy)$, recolor *uz* with 9, color *uv* with 2. So we can get total coloring of *G* with colors from *L*, a contradiction. Hence we complete the proof of Lemma 3.

Lemma 4. Since G contains no adjacent 4-cycles, then the following results hold:

- (a) Any 4⁺-vertex is incident with at most $\lfloor \frac{2d(v)}{3} \rfloor$ 3-faces.
- (b) Any vertex is incident with at most $\lfloor \frac{d(v)}{2} \rfloor$ 4-faces.

By Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -12 < 0.$$
⁽¹⁾

We define *ch* to be the initial charge. Let ch(x) = 2d(x) - 6 for each $x \in V(G)$ and ch(x) = d(x) - 6 for each $x \in F(G)$. In the following, we will reassign a new charge

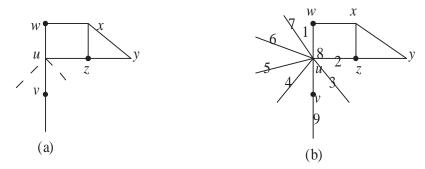


Figure 2 Reducible Configuration

denoted by ch'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -12.$$
 (2)

In the following, we will show that $ch'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (2), completing the proof.

The discharging rules are defined as follows.

R1-1. Each 2-vertex receives 2 from its general 2-master or receives 1 from each of its special 2-master.

R1-2. Let f be a 3-face. If $\delta(f) \leq 3$, then f receives $\frac{3}{2}$ from each of its incident 7⁺-vertices. Otherwise, f receives 1 from each of its incident vertices.

R1-3. Let f be a 4-face. If f is incident with two 4⁻-vertices, then f receives 1 from each of its incident 6⁺-vertices. Otherwise, f receives $\frac{2}{3}$ from each of its incident 5⁺-vertices.

R1-4. For a 5-face f and its incident vertex v, f receives $\frac{1}{3}$ if $d(v) \ge 6$, $\frac{1}{5}$ if d(v) = 5. let f be a face of G. Clearly, $ch'(f) = ch(f) = d(f) - 6 \ge 0$ if $d(f) \ge 6$. If d(f) = 3, then $ch'(f) \ge ch(f) + \min\{\frac{3}{2} \times 2, 1 \times 3\} = 0$ by R1-2 and Lemma 1. If d(f) = 4, then $ch'(f) \ge ch(f) + \min\{2 \times 1, \frac{2}{3} \times 3\} = 0$ by R1-3. If d(f) = 5, then $ch'(f) \ge ch(f) + \min\{\frac{1}{3} \times 3, \frac{1}{5} \times 5\} = 0$ by R1-4.

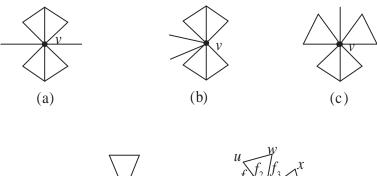
Let *v* be a vertex of *G*. If d(v) = 2, then ch'(v) = ch(v) + 2 = 0 by R1-1. If d(v) = 3, then ch'(v) = ch(v) = 0. If d(v) = 4, then *v* is incident with at most two 3-faces. And it follows that $ch'(v) \ge ch(v) - 2 \times 1 = 0$. If d(v) = 5, then $ch'(v) \ge ch(v) - \max\{3 + \frac{1}{5} \times 2, 2 + \frac{2}{3} \times 2 + \frac{1}{5}, 1 + \frac{2}{3} \times 2 + \frac{1}{5} \times 2\} = \frac{7}{15} > 0$. If d(v) = 6, then $ch'(v) \ge ch(v) - 4 \times 1 - 2 \times 1 = 0$. If d(v) = 7, then *f* is incident with at most four 3-faces. And if $f_3(v) = 4$, then $f_4(v) \le 1$. Thus $ch'(v) \ge ch(v) - \max\{\frac{3}{2} \times 4 + 1 + \frac{1}{3} \times 2, \frac{3}{2} \times 3 + 3 + \frac{1}{3}\} = \frac{1}{6} > 0$.

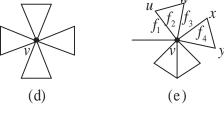
If d(v) = 8, then $ch(v) = 2 \times 8 - 6 = 10$ and v is incident with at most five 3-faces by Lemma 4. If v is adjacent to no 2-vertex, then $ch'(v) \ge 10 - \max\{\frac{3}{2} \times 5 + \frac{1}{3} \times 3, \frac{3}{2} \times 4 + 4 \times 1\} = 0$.

Otherwise, *v* is adjacent to at least one 2-vertex. we consider the following 4-cases. **Case 1.** $f_3(v) = 5$.

In this case, v must be a special 2-master by Lemma 2, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 5 - \frac{1}{3} \times 3 = \frac{1}{2} > 0$.

Case 2. $f_3(v) = 4$. Various situations are illustrated in Figure 3.

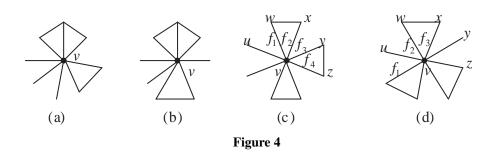




In Figure 3(a)-(c), $f_4(v) \le 1$, then $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 4 - \max\{\frac{1}{3} \times 4, \frac{1}{3} \times 3 + 1\} = 0$. In Figure 3(d), v must be a special 2-master by Lemma 2, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - 3 \times 1 - 4 = \frac{1}{2} > 0$. In figure 3(e), $f_4(v) \le 2$. If v is a special 2-master, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 4 - 2 - \frac{1}{3} \times 2 = \frac{1}{3} > 0$. Otherwise, if f_1 is a 5⁺-face, then $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 4 - 1 - \frac{1}{3} \times 3 = 0$. If f_1 is a 4-face, then $d(u) \ge 4$ by Lemma 3. And if $\delta(f_2) \ge 4$, then $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 3 - 1 - 1 - \frac{2}{3} - \frac{1}{3} \times 2 = \frac{1}{6} > 0$. Otherwise d(w) = 3, $d(u) \ge 7$. In this case, if d(x) = 3, then f_3 must be a 5⁺-face by Lemma 2, thus $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 4 - \frac{2}{3} - \frac{1}{3} \times 3 = \frac{1}{3} > 0$. Otherwise, $ch'(v) \ge ch(v) - 2 - \max\{\frac{3}{2} \times 4 + \frac{2}{3} \times 2 + \frac{1}{3} \times 2, \frac{3}{2} \times 3 + 1 + \frac{2}{3} + 1 + \frac{1}{3} \times 2\} = 0$.

Case 3. $f_3(v) = 3$. If v is a special 2-master, then $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - 4 - \frac{1}{3} = \frac{1}{6} > 0$. We only need to consider the case that v is a general 2-master. Various situations are illustrated in Figure 4.

In figure 4(a) and 4(b), $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 3 - 2 - \frac{1}{3} \times 3 = \frac{1}{2} > 0$. In Figure 4(c), without loss of generality, assume d(u) = 2. If f_1 is a 5⁺-face, then $ch'(v) \ge ch(v) - \frac{1}{2} + \frac$



 $\begin{aligned} 2 - \max\{\frac{3}{2} \times 3 + \frac{2}{3} + 2 + \frac{1}{3} \times 2, 1 + \frac{3}{2} \times 2 + 3 + \frac{1}{3} \times 2\} &= \frac{1}{6} > 0. \text{ Otherwise, if } f_1 \text{ is a} \\ 4 \text{-face, then } d(w) &\geq 4 \text{ by Lemma 2 and Lemma 3. In this case, if } \delta(f_2) &\geq 4, \text{ then } ch'(v) \geq ch(v) - 2 - \frac{3}{2} \times 2 - 1 - \frac{2}{3} - 3 - \frac{1}{3} = 0. \text{ Otherwise, } d(x) = 3, d(w) \geq 7. \text{ If } \delta(f_4) \geq 4, \\ \text{then } ch'(v) \geq ch(v) - 2 - \frac{3}{2} \times 2 - 1 - \frac{2}{3} \times 2 - 2 - \frac{1}{3} = \frac{1}{3} > 0. \text{ If } \delta(f_4) \leq 3, \text{ then } ch'(v) \geq ch(v) - 2 - \max\{\frac{3}{2} \times 3 + \frac{2}{3} \times 3 + 1 + \frac{1}{3}, \frac{3}{2} \times 3 + \frac{2}{3} \times 2 + 1 + \frac{1}{3} \times 2\} = \frac{1}{6} > 0. \text{ In Figure 4} \\ \text{(d), without loss of generality, assume } d(u) = 2. \text{ If } d(f_1) \geq 5, d(f_2) \geq 5, \text{ then } ch'(v) \geq 10 - 2 - \frac{3}{2} \times 3 - 2 - \frac{1}{3} \times 3 = \frac{1}{2} > 0. \text{ Otherwise, assume } f_2 \text{ is a 4-face, then } d(w) \geq 4 \text{ by Lemma 2 and Lemma 3. If } \delta(f_3) \geq 4, \text{ then } ch'(v) \geq ch(v) - 2 - \frac{3}{2} \times 2 - 1 - 3 - \frac{2}{3} = \frac{1}{3} > 0. \end{aligned}$

Case 4. $f_3(v) \le 2$.

In this case, $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 2 - 4 - \frac{1}{3} \times 2 = \frac{1}{3} > 0.$

In any case, we have $ch'(x) \ge 0$ for each element $x \in V(G) \cup F(G)$, a contradiction. Hence we complete the proof of Theorem 1.

References

- M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965.
- [2] J.A. Bondy, U.S.R. Murty, Graph theory with applications, North-Holland, New York, 1976.
- [3] O.V.Borodin, A.V.Kostochka and D.R.Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory, 26(1997), 53-59.
- [4] O.V.Borodin, A.V.Kostochka and D.R.Woodall, Total colorings of planar graphs with large girth, *Europ.J. Combin*, **19**(1998), 19-24.
- [5] D.Z. Du, L. Shen, Y.Q. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, *Discrete Applied Math.*,(accepted)
- [6] J.F. Hou, Y. Zhu, G.Z. Liu, J.L. Wu and M. Lan, Total colorings of planar graphs without small cycles, graphs Combin., 24(2008), 91-100.
- [7] L. Kowalik, J.S. Sereni and R. Skrekovski, Total colouring of plane graphs with maximum degree nine, *SIAM J. Discrete Math*, **22** (4) (2008), 1462-1479. Full Text via CrossRef.
- [8] A.V.Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, *Discrete math.*, **162**(1996), 199-214.
- [9] M. Roesnfeld, On the total colorings of certain graphs Israel J.Math., 9(1971), 396-402.

- [10] L. Shen, Y.Q. Wang, Total coloring of planar graphs with maximum degree at least 8, SCi.China, 38(2)(2008),1356-1364.(in chinese)
- [11] A.Sánchez-Arroyo, Determining the total coloring number is NP-hard, *Discrete Math.*, 78(1989), 315-319.
- [12] N.Vijayaditya, On total chromatic number of a graph, J. London Math. Soc., 3(2)(1971), 405-408.
- [13] V.G. Vizing, Some unresolved problems in graph theory, *Uspekhi Mat. Nauk*, 23(1968), 117-134.(in Russian)
- [14] W.F. Wang, Total chromatic number of planar graphs with maximum degree ten, *J. Graph theory*, **54**(2007), 91-102.
- [15] P.Wang and J.Wu, A note on total colorings of planar graphs without 4-cycles, *Discuss. Math. Graph Theory*, 24(2004),125-135.