

Routing by Mixed Set Programming

Jianyang Zhou

ENGINEST, 1 allée de l’Alzette – 54500 Vandoeuvre-Lès-Nancy – France
zhou@enginest.com

Abstract This paper presents the solution to a routing problem (Pick-up and Delivery with
Time Windows) by Mixed Set Programming which solves constraint satisfaction problems
over a mixed domain of reals, integers, Booleans, references and sets [8]. To illustrate the
method, a complete constraint program in the NCL language [7, 9] is presented.

Keywords Mixed Set Programming, Natural Constraint Language, Pick-up and Delivery
with Time Windows, Vehicle Routing

1 Introduction
Pessimistic conclusions are made in [3,4] about the CP (Constraint Program-

ming) method respectively in solving set partitioning problem (SPP) and vehicle
routing problem (VRP) though CP is flexible in handling constraints. Linear solvers
seem to be efficient in solving SPP and VRP. However, algorithms by linear relaxa-
tion may not be flexible enough in tackling complex side constraints.

Based on the above observation, we take SPP and VRP as benchmark problems
to evaluate the performance of an exact solver. This paper argues: 1) Linear solver
is not the only type of solver that can tackle SPP and VRP; 2) Traditional CP solver
is not the only type of solver that is flexible in modeling Constraint Satisfaction
Problems (CSP). This paper shows: 1) In [8], MSP (Mixed Set Programming)
solves efficiently several hard SPP instances that are not solved by CP; 2) In this
paper, a complete MSP model is presented in NCL [7, 9] to illustrate the solution to
a hard routing problem – Pick-up and Delivery with Time Windows.

2 Mixed Set Programming
Mixed Set Programming (MSP) is an algorithmic framework for modeling and

solving constraint satisfaction problems [8, 9].
By Set Programming we do not mean the simple use of set notations or set va-

riables in a constraint solving system, but rather rigorous and complete set theoreti-
cal formulation and reasoning in a systematic way to solve problems such as Set
Partitioning, Job-shop Scheduling and Vehicle Routing.

By Mixed Set Programming, we mean:
 Constraint solving and reasoning over a mixed domain of reals, integers,

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 157–166

Booleans, references, and sets;
 Incorporating and combining a simplified form of first order logic, naïve

set reasoning, numerical constraints and OR algorithms in a cooperative
way. Here, set theoretical formulation is fundamental in problem modeling
and set theoretical reasoning is crucial in problem solving.

3 Routing By Set Sorting
Results in this paper are obtained on a PC with a CPU of 1.83GHz.

3.1 Set Sorting By 2 Tuples of Variables
Sorting is fundamental in computer science. In MSP, logical sorting is critical

for scheduling and routing. In [6], the solution to the Job-shop problem using integ-
er sorting with 3 tuples of variables is presented; in [8], the solution to the Job-shop
problem using set sorting with 3 tuples of variables is presented. This paper
presents the set sorting model with 2 tuples of variables. We adopt the following
notation convention: Possibly subscripted by i, j, k, l and numbered by n, we take x
for integer variable and B for set variable.

 i  [1, n] (

xi  [2, n+1],

Bi ≺ Bxi

) ,

 i  j  [1, n]

xi  xj ,

To facilitate the presentation, the model supposes that 1 is the source and n+1 is

the sink for the sorting chain. Single vehicle routing is illustrated in Figure 1.

Figure 1: Routing By Set Sorting with 2 Tuples of Variables

158 The 8th International Symposium on Operations Research and Its Applications

3.2 Pick-up & Delivery with Time Windows
In the Pick-up & Delivery Problem with Time Windows (PDPTW) [2], vehicles

transport goods from origins to destinations on respecting dynamic load, precedence
and coupling constraints in addition to capacity and time window constraints of the
vehicle routing problem [5].

In this paper, vehicle routing is viewed as the composed problem of set parti-
tioning and traveling salesman problems. In [8], MSP is showed to be effective in
handling set partitioning problem. By combining set partitioning and set sorting
models [8], the solving of the pick-up and delivery problem is presented through the
following complete NCL program:

nbTruck = , % number of trucks

capacityTruck = , % truck capacity

nbOrder = , % number of orders
TRUCK = [1, nbTruck],
ORDER = [1, nbOrder],

 i  TRUCK (
sourceTrucki = – i, % origin of truck i
sinkTrucki = – (i + nbTruck) % destination of truck i

),

depot = –1, % one depot
SOURCE = {  i  TRUCK sourceTrucki }, % origins

SINK = {  i  TRUCK sinkTrucki }, % destinations

SOURCEORDER = ORDER ∪ SOURCE,

ORDERSINK = ORDER ∪ SINK,

SOURCEORDERSINK = ORDER ∪ SOURCE ∪ SINK,

 i  SOURCEORDERSINK (% explicit declaration
xOrderi  0, % abscissa

yOrderi  0, % ordinate

demandOrderi  0, % demand

w1Orderi  0, % lower bound of time window

w2Orderi  0, % upper bound of time window

serviceTimeOrderi  0, % service time

idxPickupOrderi  0, % index to pickup order

idxDelivrOrderi  0, % index to delivery order

TimeWinOrderi = [w1Orderi, w2Orderi], % time window

loadOrderi  [0, capacityTruck], % dynamic truck load at order i

Routing by Mixed Set Programming 159

truckOrderi  TRUCK, % truck for an order

),

 i  {depot } ∪ ORDER (% input for depot & orders
xOrderi = ,

yOrderi = ,

demandOrderi = ,

w1Orderi = ,

w2Orderi = ,

serviceTimeOrderi = ,

idxPickupOrderi = ,

idxDelivrOrderi = 

),

 i  SOURCE ∪ SINK (% same origins & destinations
xOrderi = xOrderdepot,
yOrderi = yOrderdepot,
demandOrderi = demandOrderdepot,

TimeWinOrderi = TimeWinOrderdepot,
serviceTimeOrderi = serviceTimeOrderdepot,
idxPickupOrderi = 0,
idxDelivrOrderi = 0

),

PICKUPORDER = {  i  ORDER (demandOrderi > 0 ? i : 0) } \ 0,

 i , j  SOURCEORDERSINK (

dOrderOrderi,j =  5.0
2

)jyOrderiyOrder(
2

)jxOrderixOrder(  , % distance matrix

tOrderOrder i,j = dOrderOrder i,j + serviceTimeOrderi % time matrix

),
 i  TRUCK (

OrderTrucki ⊂ ORDER, % set of orders of truck i

OrderSourceTruck i = { sourceTrucki } ∪ OrderTrucki,

OrderSinkTruck i = { sinkTrucki } ∪ OrderTrucki,

OrderSourceSinkTruck i = OrderSourceTrucki ∪ { sinkTrucki },

truckOrdersourceTruck i
 = i,

truckOrdersinkTrucki
 = i,

loadOrdersourceTrucki
 = 0,

160 The 8th International Symposium on Operations Research and Its Applications

loadOrdersinkTrucki
 = 0

),

ORDER = ∪i  TRUCK OrderTrucki , % set partitioning over orders

 i < j  TRUCK
OrderTrucki ∩ OrderTruckj = ,

 i  SOURCEORDER (

TimeOrderi = [t1Orderi, t2Orderi], % work time from i to next

TimeOrderi ⊂ TimeWinOrderdepot,

nextOrderOrderi ORDERSINK, % successor of order i

TimeOrderi ≺ TimeOrdernextOrderi
, % set sorting for routing

⋕TimeOrderi = tOrderOrderi, nextOrderOrderi
, % distance from order i to next

i  OrderSourceTrucktruckOrderi
,

t1Orderi  TimeWinOrderi, % time window constraint

loadOrdernextOrderi
 % dynamic load constraint

= loadOrderi + demandOrdernextOrderi

),
 i  j  SOURCEORDER

nextOrderi  nextOrderj,

 i  PICKUPORDER (
TimeOrderi ≺ TimeOrderidxDelivrOrderi

, % precedence constraint

truckOrderi = truckOrderidxDelivrOrderi
 % coupling constraint

),
 i  TRUCK (
t1OrdersourceTrucki

 = 0, % trucks depart always at time 0

 j  SourceOrderTrucki

nextOrderj  OrderSinkTrucki,

activeTrucki  OrderTrucki   % active iff it carries an order

),
 i < j  TRUCK (% symmetry breaking

activeTruckj  activeTrucki,

sup OrderSourceTrucki > sup OrderSourceTruckj

),
 j  PICKUPORDER (

Routing by Mixed Set Programming 161

 i  TRUCK (
dSumOrderTrucki,j =

kOrderTrucki
 max(dOrderOrderj,k, dOrderOrderidxDelivrOrderj,k

),

dOrderTrucki,j = dSumOrderTrucki,j / ⋕OrderTrucki + 0.5,

), % order-to-truck distance

differenceDistTruckOrderj % difference between distances

= { i△truckOrderj j,ikdOrderTruc }[2] – % 2nd least order-truck distance

{ i△truckOrderj j,ikdOrderTruc }[1], % the least order-truck distance

),

 i  SOURCEORDER

differenceDistSuccOrderi % difference between distances

= { j  △nextOrderi dOrderOrderi,j } [2] – % 2nd least order-succ distance

{ j  △nextOrderi dOrderOrderi,j } [1] , % the least order-succ distance

 j  PICKUPORDER  (
min ⋕△truckOrderj , % least slack fewest trucks
max differenceDistTruckOrderj , % least regret: easiest choice

min ⋕△nextOrderj , % least slack

)
 i  △truckOrderj  (

min j,ikdOrderTruc , % greedy search

min ⋕△OrderTrucki % least slack

)
j  OrderTruckj ?, % query on “j  OrderTrucki”

 j  SOURCEORDER  (
min ⋕△nextOrderj , % least slack: fewest successors
max differenceDistSuccOrderj, % least regret: easiest choice

min ⋕△truckOrderj , % least slack

)
 k  △nextOrderj  (
min tOrderOrderj,k % greedy search

)
nextOrderj = k ?, % query on “nextOrderj = k”

162 The 8th International Symposium on Operations Research and Its Applications

 i  SOURCEORDER
t1Orderi = ?,

min iSOURCEORDER ⋕TimeOrderi - iSOURCEORDER serviceTimeOrderi.

As commented in the NCL program, general parameters include nbTruck, capa-

cityTruck and nbOrder. Each order has its identifier, coordinates, demand, time
window, service time, pick-up and delivery locations. If demandOrderi is non-

negative, it means a pick-up order to which is associated a delivery order idxDeli-
vrOrderi; otherwise, it means a delivery order to which is associated a pick-up order

idxPickupOrderi. dOrderi,j is the Euclidean distance from order i to j; tOrderi,j

(service time + dOrderi,j) represents time distance from order i to j.

To each truck i is associated an origin sourceTrucki, a destination sinkTrucki,

and order set OrderTrucki, which form a tour. Truck i is active iff OrderTrucki  .

For each order i, the model introduces successor variable nextOrderi and time inter-

val variable TimeOrderi (work and driving time from order i to its successor), with

t1Orderi and t2Orderi being starting and ending times.

Different from [1] which uses integer sorting of 3 tuples of variables to model
vehicle routing and generate feasible schedules, the present model adopts set sorting
of 2 tuples of variables and the routing algorithm here is exact. The modeling of
main constraints is explained below:
 “Set sorting” is used to express that time interval of order i precedes that of

its successor, and different orders have different successors:
 i  SOURCEORDER

TimeOrderi ≺ TimeOrdernextOrderi
,

 i  j  SOURCEORDER

nextOrderi  nextOrderj,

 For order i, the length of the time interval TimeOrderi equals to the time

distance (service + driving) from order i to its successor, and the balance of
the load of its truck should hold:
 i  SOURCEORDER (

⋕TimeOrderi = tOrderi, nextOrderi
,

loadOrdernextOrderi
 = loadOrderi + demandOrdernextOrderi

),
 Pick-up precedes delivery, and should be coupled in a same truck:

 i  PICKUPORDER (
TimeOrderi ≺ TimeOrderidxDelivrOrderi

,

truckOrderi = truckOrderidxDelivrOrderi

),

Routing by Mixed Set Programming 163

 To break symmetry, the model requires that a truck with lower number is
used in preference and contains lower supremum of the origin and orders:

 i < j  TRUCK (

 activeTruckj  activeTrucki,

sup OrderSourceTrucki > sup OrderSourceTruckj ,

),

Logically it is sufficient to instantiate the successor variable nextOrderi for each

order i. This is efficient when there are only a few trucks. For general purpose,
search can be programmed in 2 steps: First at set partitioning level it instantiates the
truck order variable OrderTrucki for each truck i; next at routing level it instantiates

the successor variable nextOrderi for each order i. The instantiation of the release

time variable t1Orderi for all order i is simply a final verification for a solution.

In addition to least slack rules, the NCL model also uses regret-based search
rules for solving the problem. To set up the regret criterion for set partitioning, dOr-
derTrucki,j is introduced to represent “fuzzy” distance from order j to truck i. For

pick-up order i, differenceDistTruckOrderi is introduced to calculate the difference

between the second least and the least order-truck distances. If the difference is the
biggest, hopefully regret on order-truck choice is the least. To query on OrderTrucki,

the search rules are:
 First, select a critical order j in the lexicographic order of (fewest truck

candidates, least regret on order-truck choice, fewest successor candidates);
 Next, for the fixed order j, select a truck i in the lexicographic order of

(least truck-order distance, fewest order candidates);
 The query “j OrderTrucki ?” triggers the branching: first try to put order j

to truck i; next try the inverse logic.
For any order i, variable differenceDistSuccOrderi is introduced to calculate the

difference between the second least and the least order-successor distances. Search
on nextOrderi follows the rules as below:

 First, select a critical order j in the lexicographic order of (fewest successor
candidates, least regret on successor choice, fewest truck candidates);

 Next, for order j, greedily select a successor i with the smallest distance;
 The query “nextOrderj = k ?” triggers the branching: first try to constrain

orderj’s successor to be k; next try the inverse logic.

The objective is to minimize the driving time: iSOURCEORDER
⋕TimeOrder i - iSOURCEORDER serviceTimeOrderi.

NCL can solve at least 4 problems (LC101, LC201, LR101, LRC101) of [2] with

optimality proofs. Optimal bounds proved are respectively 829 for LC101, 590 for
LC201, 1638 for LR101 and 1702 for LRC101. The computation time bounds are 20

164 The 8th International Symposium on Operations Research and Its Applications

seconds for LC101, LC201, LR101 and 3 hours for LRC101. The optimal solutions
proved by NCL are:

4 Conclusion
This paper presents the modeling and solving of the pick-up and delivery prob-

lem with time windows using Mixed Set Programming. A complete constraint pro-
gram is given. In industrial applications, routing problems may involve many com-
plex side constraints. Fortunately, the flexibility of MSP allows describing and solv-
ing non-linear constraints in a natural way.

References
[1] E. Domenjoud, C. Kirchner, J. Zhou. Generating Feasible Schedules for a Pick-Up and

Delivery Problem. Technical Report of Loria, France, 1999.

Figure 5. LRC101 (14 trucks, 106
orders), cost: 1702

Figure 4. LR101 (19 trucks, 106
orders), cost: 1638

Figure 2: LC101 (10 trucks, 106
orders), cost: 829

Figure 3. LC201 (3 trucks, 102
orders), cost: 590

Routing by Mixed Set Programming 165

[2] H. Li and A. Lim, A MetaHeuristic for the Pick-up and Delivery Problem with Time
Windows, In Proceedings of the 13th International Conference on Tools with Artificial
Intelligence, Dallas, TX, USA, 2001.

[3] T. Müller. Solving set partitioning problems with constraint programming. In PAP-
PACT98, pages 313-332. The Practical Application Company Ltd, 1998.

[4] L.-M. Rousseau, M. Gendreau, G. Pesant. Solving VRPTWs with Constraint Program-
ming Based Column Generation. Annals OR 130(1-4): 199-216 (2004).

[5] M.M. Solomon. The vehicle routing and scheduling problems with time window con-
straints. Operations research, 35: 254-265, 1987.

[6] J. Zhou. A permutation-based approach for solving the Job-shop problem. Constraints
2(2): 185-213, (1997).

[7] J. Zhou. Introduction to the constraint language NCL. JLP45(1-3): 71-103 (2000).
[8] J. Zhou. A Note On Mixed Set Programming. Proc. of The 7th International Symposium

on Operations Research and Its Applications, pp. 131-140. Lijiang, China, October
2008.

[9] J. Zhou. The NCL Natural Constraint Language (in Chinese). Science Press. 236 pp,
2009.

166 The 8th International Symposium on Operations Research and Its Applications

