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Abstract  This paper presents the solution to a routing problem (Pick-up and Delivery with 
Time Windows) by Mixed Set Programming which solves constraint satisfaction problems 
over a mixed domain of reals, integers, Booleans, references and sets [8]. To illustrate the 
method, a complete constraint program in the NCL language [7, 9] is presented. 
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1 Introduction 
Pessimistic conclusions are made in [3,4] about the CP (Constraint Program-

ming) method respectively in solving set partitioning problem (SPP) and vehicle 
routing problem (VRP) though CP is flexible in handling constraints. Linear solvers 
seem to be efficient in solving SPP and VRP. However, algorithms by linear relaxa-
tion may not be flexible enough in tackling complex side constraints. 

Based on the above observation, we take SPP and VRP as benchmark problems 
to evaluate the performance of an exact solver. This paper argues: 1) Linear solver 
is not the only type of solver that can tackle SPP and VRP; 2) Traditional CP solver 
is not the only type of solver that is flexible in modeling Constraint Satisfaction 
Problems (CSP). This paper shows: 1) In [8], MSP (Mixed Set Programming) 
solves efficiently several hard SPP instances that are not solved by CP; 2) In this 
paper, a complete MSP model is presented in NCL [7, 9] to illustrate the solution to 
a hard routing problem – Pick-up and Delivery with Time Windows. 

2 Mixed Set Programming 
Mixed Set Programming (MSP) is an algorithmic framework for modeling and 

solving constraint satisfaction problems [8, 9]. 
By Set Programming we do not mean the simple use of set notations or set va-

riables in a constraint solving system, but rather rigorous and complete set theoreti-
cal formulation and reasoning in a systematic way to solve problems such as Set 
Partitioning, Job-shop Scheduling and Vehicle Routing. 

By Mixed Set Programming, we mean: 
 Constraint solving and reasoning over a mixed domain of reals, integers, 
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Booleans, references, and sets; 
 Incorporating and combining a simplified form of first order logic, naïve 

set reasoning, numerical constraints and OR algorithms in a cooperative 
way. Here, set theoretical formulation is fundamental in problem modeling 
and set theoretical reasoning is crucial in problem solving. 

3 Routing By Set Sorting 
Results in this paper are obtained on a PC with a CPU of 1.83GHz.  

3.1 Set Sorting By 2 Tuples of Variables 
Sorting is fundamental in computer science. In MSP, logical sorting is critical 

for scheduling and routing. In [6], the solution to the Job-shop problem using integ-
er sorting with 3 tuples of variables is presented; in [8], the solution to the Job-shop 
problem using set sorting with 3 tuples of variables is presented. This paper 
presents the set sorting model with 2 tuples of variables. We adopt the following 
notation convention: Possibly subscripted by i, j, k, l and numbered by n, we take x 
for integer variable and B for set variable. 

 i  [1, n] ( 

xi   [2, n+1], 

Bi ≺ Bxi
 

) , 

 i  j  [1, n] 

xi    xj , 

 
To facilitate the presentation, the model supposes that 1 is the source and n+1 is 

the sink for the sorting chain. Single vehicle routing is illustrated in Figure 1. 

 
Figure 1: Routing By Set Sorting with 2 Tuples of Variables 
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3.2 Pick-up & Delivery with Time Windows 
In the Pick-up & Delivery Problem with Time Windows (PDPTW) [2], vehicles 

transport goods from origins to destinations on respecting dynamic load, precedence 
and coupling constraints in addition to capacity and time window constraints of the 
vehicle routing problem [5].  

In this paper, vehicle routing is viewed as the composed problem of set parti-
tioning and traveling salesman problems. In [8], MSP is showed to be effective in 
handling set partitioning problem. By combining set partitioning and set sorting 
models [8], the solving of the pick-up and delivery problem is presented through the 
following complete NCL program: 

 
nbTruck  =   ,    % number of trucks 

capacityTruck =   ,    % truck capacity 

nbOrder          =   ,    % number of orders 
TRUCK  =   [1, nbTruck],  
ORDER  =   [1, nbOrder], 
 
 i  TRUCK ( 
sourceTrucki  =   – i,     % origin of truck i 
sinkTrucki      =   –  (i + nbTruck)             % destination of truck i 

), 
 
depot   =   –1,     % one depot 
SOURCE =  {  i  TRUCK  sourceTrucki },  % origins 

SINK =  {  i  TRUCK  sinkTrucki }, % destinations 

SOURCEORDER =   ORDER ∪ SOURCE, 

ORDERSINK =   ORDER ∪ SINK, 

SOURCEORDERSINK  =   ORDER ∪ SOURCE ∪ SINK,  
 

 i  SOURCEORDERSINK  (  % explicit declaration 
xOrderi           0,    % abscissa 

yOrderi           0,   % ordinate 

demandOrderi          0,    % demand 

w1Orderi     0,    % lower bound of time window 

w2Orderi     0,    % upper bound of time window 

serviceTimeOrderi     0,    % service time 

idxPickupOrderi    0,    % index to pickup order  

idxDelivrOrderi    0,    % index to delivery order 

TimeWinOrderi   =  [w1Orderi, w2Orderi], % time window 

loadOrderi     [0, capacityTruck],  % dynamic truck load at order i 
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truckOrderi    TRUCK,   % truck for an order 

), 

 i   {depot } ∪ ORDER (   % input for depot & orders 
xOrderi        =   , 

yOrderi        =   , 

demandOrderi       =   , 

w1Orderi  =   , 

w2Orderi  =   , 

serviceTimeOrderi  =   , 

idxPickupOrderi =   , 

idxDelivrOrderi =    

), 

 i  SOURCE ∪ SINK (   % same origins & destinations 
xOrderi           =   xOrderdepot, 
yOrderi           =   yOrderdepot, 
demandOrderi    =   demandOrderdepot, 

TimeWinOrderi   =   TimeWinOrderdepot, 
serviceTimeOrderi  =   serviceTimeOrderdepot, 
idxPickupOrderi =   0, 
idxDelivrOrderi =   0 

), 
 
PICKUPORDER = {  i  ORDER   (demandOrderi > 0 ? i : 0 ) } \ 0, 
 
 i , j  SOURCEORDERSINK ( 

dOrderOrderi,j  =  5.0
2

)jyOrderiyOrder(
2

)jxOrderixOrder(   , % distance matrix 

tOrderOrder i,j  = dOrderOrder i,j + serviceTimeOrderi % time matrix 

), 
 i  TRUCK ( 

OrderTrucki   ⊂  ORDER,   % set of orders of truck i 

OrderSourceTruck i    =   { sourceTrucki } ∪ OrderTrucki, 

OrderSinkTruck i    =   { sinkTrucki } ∪ OrderTrucki, 

OrderSourceSinkTruck i   =   OrderSourceTrucki ∪ { sinkTrucki }, 

truckOrdersourceTruck i
     =   i, 

truckOrdersinkTrucki
         =   i, 

loadOrdersourceTrucki
       =   0, 
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loadOrdersinkTrucki
    =   0 

), 
 
ORDER = ∪i  TRUCK  OrderTrucki ,  % set partitioning over orders 

 i < j  TRUCK 
OrderTrucki ∩ OrderTruckj = , 

 
 i  SOURCEORDER ( 

TimeOrderi   =  [t1Orderi, t2Orderi],   % work time from i to next 

TimeOrderi  ⊂  TimeWinOrderdepot, 

nextOrderOrderi  ORDERSINK,  % successor of order i 

TimeOrderi  ≺  TimeOrdernextOrderi
,  % set sorting for routing 

⋕TimeOrderi =  tOrderOrderi, nextOrderOrderi
,   % distance from order i to next 

i  OrderSourceTrucktruckOrderi
, 

t1Orderi   TimeWinOrderi,   % time window constraint 

loadOrdernextOrderi
     % dynamic load constraint 

= loadOrderi + demandOrdernextOrderi
 

), 
 i  j  SOURCEORDER 

nextOrderi    nextOrderj, 

 i  PICKUPORDER ( 
TimeOrderi  ≺ TimeOrderidxDelivrOrderi

, % precedence constraint 

truckOrderi =  truckOrderidxDelivrOrderi
 % coupling constraint 

), 
 i  TRUCK ( 
t1OrdersourceTrucki

  =  0,   % trucks depart always at time 0 

 j  SourceOrderTrucki  

nextOrderj  OrderSinkTrucki, 

activeTrucki     OrderTrucki     % active iff it carries an order 

), 
 i < j  TRUCK (    % symmetry breaking 

activeTruckj    activeTrucki, 

sup OrderSourceTrucki  >  sup OrderSourceTruckj 

), 
 j  PICKUPORDER ( 
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 i  TRUCK ( 
dSumOrderTrucki,j  = 

kOrderTrucki
 max(dOrderOrderj,k, dOrderOrderidxDelivrOrderj,k

),  

dOrderTrucki,j  =  dSumOrderTrucki,j  /  ⋕OrderTrucki + 0.5, 

),      % order-to-truck distance 

differenceDistTruckOrderj   % difference between distances 

= { i△truckOrderj j,ikdOrderTruc }[2]  – % 2nd least order-truck distance 

{ i△truckOrderj j,ikdOrderTruc }[1], % the least order-truck distance 

),  

 i  SOURCEORDER 

differenceDistSuccOrderi   % difference between distances 

=  { j  △nextOrderi  dOrderOrderi,j } [2] – % 2nd least order-succ distance 

{ j  △nextOrderi  dOrderOrderi,j } [1] , % the least order-succ distance 

 
 j  PICKUPORDER  ( 
min      ⋕△truckOrderj ,   % least slack fewest trucks 
max     differenceDistTruckOrderj ,  % least regret: easiest choice 

min      ⋕△nextOrderj ,   % least slack 

) 
 i  △truckOrderj  ( 

min      j,ikdOrderTruc ,   % greedy search 

min      ⋕△OrderTrucki   % least slack 

) 
j  OrderTruckj ?,    % query on “j  OrderTrucki” 

 
 j  SOURCEORDER  ( 
min      ⋕△nextOrderj  ,   % least slack: fewest successors 
max     differenceDistSuccOrderj,  % least regret: easiest choice 

min      ⋕△truckOrderj  ,   % least slack 

) 
 k  △nextOrderj  ( 
min     tOrderOrderj,k    % greedy search 

) 
nextOrderj = k ?,    % query on “nextOrderj = k” 
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 i  SOURCEORDER 
t1Orderi = ?, 

 
min   iSOURCEORDER ⋕TimeOrderi - iSOURCEORDER serviceTimeOrderi. 

 
As commented in the NCL program, general parameters include nbTruck, capa-

cityTruck and nbOrder. Each order has its identifier, coordinates, demand, time 
window, service time, pick-up and delivery locations. If demandOrderi is non-

negative, it means a pick-up order to which is associated a delivery order idxDeli-
vrOrderi; otherwise, it means a delivery order to which is associated a pick-up order 

idxPickupOrderi. dOrderi,j is the Euclidean distance from order i to j; tOrderi,j 

(service time + dOrderi,j) represents time distance from order i to j. 

To each truck i is associated an origin sourceTrucki, a destination sinkTrucki, 

and order set OrderTrucki, which form a tour. Truck i is active iff OrderTrucki  . 

For each order i, the model introduces successor variable nextOrderi and time inter-

val variable TimeOrderi (work and driving time from order i to its successor), with 

t1Orderi and t2Orderi being starting and ending times. 

Different from [1] which uses integer sorting of 3 tuples of variables to model 
vehicle routing and generate feasible schedules, the present model adopts set sorting 
of 2 tuples of variables and the routing algorithm here is exact. The modeling of 
main constraints is explained below: 
 “Set sorting” is used to express that time interval of order i precedes that of 

its successor, and different orders have different successors: 
 i  SOURCEORDER 

TimeOrderi  ≺  TimeOrdernextOrderi 
, 

 i  j  SOURCEORDER 

nextOrderi   nextOrderj, 

 For order i, the length of the time interval TimeOrderi equals to the time 

distance (service + driving) from order i to its successor, and the balance of 
the load of its truck should hold: 
 i  SOURCEORDER ( 

⋕TimeOrderi =  tOrderi, nextOrderi 
, 

loadOrdernextOrderi
  =  loadOrderi + demandOrdernextOrderi

 

 ), 
 Pick-up precedes delivery, and should be coupled in a same truck: 

 i  PICKUPORDER ( 
TimeOrderi  ≺ TimeOrderidxDelivrOrderi 

, 

truckOrderi  =  truckOrderidxDelivrOrderi
 

 ), 
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 To break symmetry, the model requires that a truck with lower number is 
used in preference and contains lower supremum of the origin and orders: 

 i < j  TRUCK ( 

  activeTruckj    activeTrucki, 

sup OrderSourceTrucki   >   sup OrderSourceTruckj , 

 ), 

Logically it is sufficient to instantiate the successor variable nextOrderi for each 

order i. This is efficient when there are only a few trucks. For general purpose, 
search can be programmed in 2 steps: First at set partitioning level it instantiates the 
truck order variable OrderTrucki for each truck i; next at routing level it instantiates 

the successor variable nextOrderi for each order i. The instantiation of the release 

time variable t1Orderi for all order i is simply a final verification for a solution. 

In addition to least slack rules, the NCL model also uses regret-based search 
rules for solving the problem. To set up the regret criterion for set partitioning, dOr-
derTrucki,j is introduced to represent “fuzzy” distance from order j to truck i. For 

pick-up order i, differenceDistTruckOrderi is introduced to calculate the difference 

between the second least and the least order-truck distances. If the difference is the 
biggest, hopefully regret on order-truck choice is the least. To query on OrderTrucki, 

the search rules are: 
 First, select a critical order j in the lexicographic order of (fewest truck 

candidates, least regret on order-truck choice, fewest successor candidates); 
 Next, for the fixed order j, select a truck i in the lexicographic order of 

(least truck-order distance, fewest order candidates); 
 The query “j OrderTrucki ?” triggers the branching: first try to put order j 

to truck i; next try the inverse logic. 
For any order i, variable differenceDistSuccOrderi is introduced to calculate the 

difference between the second least and the least order-successor distances. Search 
on nextOrderi follows the rules as below: 

 First, select a critical order j in the lexicographic order of (fewest successor 
candidates, least regret on successor choice, fewest truck candidates); 

 Next, for order j, greedily select a successor i with the smallest distance; 
 The query “nextOrderj = k ?” triggers the branching: first try to constrain 

orderj’s successor to be k; next try the inverse logic. 

The objective is to minimize the driving time: iSOURCEORDER 
⋕TimeOrder i - iSOURCEORDER serviceTimeOrderi. 

 
NCL can solve at least 4 problems (LC101, LC201, LR101, LRC101) of [2] with 

optimality proofs. Optimal bounds proved are respectively 829 for LC101, 590 for 
LC201, 1638 for LR101 and 1702 for LRC101. The computation time bounds are 20 
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seconds for LC101, LC201, LR101 and 3 hours for LRC101. The optimal solutions 
proved by NCL are:  

     
 
 
 

     
 
 
 

4 Conclusion 
This paper presents the modeling and solving of the pick-up and delivery prob-

lem with time windows using Mixed Set Programming. A complete constraint pro-
gram is given. In industrial applications, routing problems may involve many com-
plex side constraints. Fortunately, the flexibility of MSP allows describing and solv-
ing non-linear constraints in a natural way. 
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