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Abstract  Compared with chance constraints model, integrated chance constraints model has 
better property about feasible solution set and measures risk more accurately in economy 
control. In this paper, we introduce four definitions of ICC models, and discuss the properties 
including convexity, continuum and differentiability. Then we present a hybrid intelligent 
algorithm, which is test efficiently by numerical experiments. At last, as a new methord to 
measure risk, conditional valu-at risk is studied as the application of ICC. Mean-CVaR 
problem can be computed efficiently using our model and algorithm, which dramatically 
improves the portfolios of investment.  
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1 Introduction 
As an important model of stochastic programming, chance constraints 

programming has been used successfully in a wide range of applications [1-2]. 
However, It is well known that chance constrained problems are non-convex in 
general, and they are convex only if certain rather strong conditions on the 
distribution of the underlying random vector is satisfied. As a quantitative alternative 
for traditional chance constraints, integrated chance constraints model was proposed 
by R.J.B.Wets [3].  

In Section 2 of this paper we introduce models of ICC. Then we discuss properties 
of ICC with stochastic convex constraints in Section 3, and get the properties 
including convexity of solution set, continuum and differentiability of restriction 
function. Subsequently, based on these properties, we design a hybrid intelligent 
algorithm for solving ICC model with discrete random variable in Section 4. Last in 
Section 5 we apply ICC model on conditional valu-at risk (CVaR) to measure risk. 

2 Models of ICC 
We consider stochastic linear programming that random variable exists only in 
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constraint. 
Dx

min )}()({  bxAxcT  , where )(A and )(b are random matrix 

vector seperately. Denoting ),(  xi mibxa i

n

j
jij ,,2,1),()(

1




 , then 

)},(,0max{  xii   can be thought as the shortage of resource. When  
i  is 

continues variable, the average shortage is 
iE =  


0

)Pr( dtti . According to 

[1,3], the first definition of ICC is as follows. 

 Definition 2.1.  

The individual model of ICC is defined as iiE   , mi ,,2,1  . Where i  

is maximum acceptance value given in advance, and the feasible set is: 

},{)(1
ii

n
ii ERxX    . The joint ICC is   )1,( miE i  , and the 

feasible set is )()( 1
1 ii

m
i XX   .  

 Definition 2.2.  

The joint ICC is   )]([max i
i

E , mi ,,2,1  , and the feasible set is 

})](max[,{)(2   
i

i

n
ii ERxX . 

The surplus and shortage are considered together, where iii EEE    .  

 Definition 2.3. 

The individual ICC has the form iii EE   , mi ,,2,1  ，where i  is the 

maximum acceptance value given in advance, and the feasible set is  

},{)(3
iii

n
ii EERxX    . The joint ICC is   )1,( miE i   and the 

feasible set is )()( 3
1 ii

m
i XX   . 

),0[   is introduced as the maximum acceptance value of condition 

expectation [4], so 

 Definition 2.4. 

The ICC is )0( 
ii PE  , and the feasible set is

},{)(4
ii

n EERxX    . 

Remark For )0( iP  ])[sgn(  iE  , so the chance constraint is a special ICC. 

3 Properties of ICC 
The reference [3] gave some properties of the ICC model with stochastic linear 

constraints,  which includes the convexity of solution set, continuum and 
differentiability of restriction function. In this section, we discuss ICC model with 
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stochastic convex constraints.  

For x nR  and pS , let ),( xA pS is the  -area satisfying 

0),( xg , then we have ),(),(),(  xxgxg A , where 
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 Lemma 3.1. 

)),(),((  xxgE B  )),(),((  xxgE A = )),(( xgE  holds for any 

AB   in pS . 

 Theorem 3.2. 

For stochastic optimazation problem }Dx,0),(:)( min{ xgxf , where D is 

a fixed, closed, finite set, ),( xg is convex about x and each random variable 

satisfying )( jE  , the following conclusions hold. 

(1) ]),([)(  xgExg  is finite, nonnegative, convex and Lipschits continuous.  

(2) For finite discrete distribution of ))(),((  ba ， )(xg is piece-wisely 

convex function and is continuous and differentiable for continuous distribution of 

))(),((  ba . So the set })(:{)(   xgRxX n is convex.  
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Proof  Firstly prove )(xg  is convex. For any ]1,0[ , mRxx 21 , , 
210 )1( xxx   , then  

)( 0xg )},(),)1(({ 021  xxxgE A  

 )},()],()1(),({ 021  xxgxgE A  

= )},(),({ 01  xxgE A + )},(),({)1( 02  xxgE A  

 ]),([ 1  xgE ]),([)1( 2   xgE = )()1()( 21 xgxg   . 

Basing on the definition of convexity, we know that )(xg  is convex about x , 

moreover is Lipschits for any x lying in D. So })(:{:)(   xgRxX n  is convex 

for given  . 
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Secondly, according to the supposing that )(xg is bounded and negative. 

Especially, when )()(),( 2

1

 bxaxg j

n

j
j 



, ]),([)(  xgExg  hold and 

random variable has continuous distribution, we have following results. 

For any pair (p, q) of real number satisfying p=0 or qp  , the equation holds 

that  }sgnsgn{)(   pqpqqpqp .  
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 holds. 

Because )(max xfii  is polyhedron function, the theorem 3.3 holds for ICC 

model. 

 Theorem 3.3. 

The set })](max[,{:)( i   
i

n ERxY  is convex for  0 . 

4 Hybrid Intelligent Algorithm for ICC with Discrete 
Random Variable 

In this section, we study the algorithm for ICC model with discrete random 
variable of which the distribution function is known. In general the programming 
with stochastic constraints is as 

Dx
min cx  

   s.t. )()(  hxT   

where x and c are n dimension vector, }:{ bAxRxD n    is a set of x which is 

negative and equivalence,   is sample point in probability space (  ,, F ), 

)(),(  hT  are random vectors and )()(  ii hxT   holds for all mi ,2,1 . 

Let S is the observation set, and k  means the kth sample of  , 

|}|,2,1{ SSk  , and )()(),(  iii hxTx  . So the expection of 

stochastic constraint can be written as ][ 
iE  =




||

1

)},(,0max{
S

k

k
i

k xp  , where 

kk p }Pr{  . 

When random variable obeys the discrete distribution, the most difficulty of 
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computing ICC is focused on the computing of the   ][ iE . Especially when the 

numbers of n and |S| are very large, the classical algorithm such as simplex method 
and test software are not suitable any more. Basing on the study in Section 2 and 3, 
we design the hybrid intelligent algorithm according to the character of the model, 
and assuming all risk parameters of i  have the same value of   in this section. 

So we have relevant theorem as follows. 

 Theorem 4.1.  

Leting Skpkk  ,}Pr{  , 0 , then ][ 
iE    has inequality form as 

follows 
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Proof 

)},(,0max{][ k
i

Sk

k
i xpE   









  )],([ )},(,0max{ k
i

Sk
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i

k

Sk

xpxp  . 

For  )],([ k
i

k
i xy  , 0k

iy  holds which satisfis the given condition. 

So the feasible set is )()( 1  i
m
i XX  , where }][,{)(   

i
n

i ERxX . 

)(iX  is a polyhedron composed by the primal n variables, new |S| variables and 

|S|+1 linear constraint. Denoting )}(),({},{ k
i

k
i

k
i

k
i hThT  , we have 

 Theorem 4.2  

)},({max][ k
i

Kk

k

SK
i xpE  




   holds for all 0 . 

From theorem 4.2, we know that when S is finite set the corresponding set to each 

constraint has the form as   


)(:{)( xThpRxX k
i

k
i

Kk

kn

SK
i  }. The 

)(iX  is a polyhedron composed by the primal n variable and the new 12 || S  

linear constraints. Subsequently, we make use of the character of ICC by appending 
ceaselessly the subset K that has the most number from S, and combine genetic, 
climb algorithm to design the hybrid intelligent algorithm. It is composed of genetic 
algorithm which is good at global searching and hill climbing algorithm which is 
fitable in local searching. 

 Algorithm4.3. 

Step1 Generate randomly the first population with N individuals in the set
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0
iBD   and t:=1. Where mihxTRxB ii

n
i ,2,1},:{0   , ii hT ,  are the 

expectation of     ii hT ,  separately, set up the counter of the number of constraint 

that k=1. 

Step2 If individuals   ])([ t
ji popE  hold, compute ))(( tpopvalue j and 

denote the best individual is ))}(({maxarg tpopvaluex j
j

t  , ',2,1 Nj  .  

Step3 Let k=k+1 and access new constraint 




)(
1

kS

l

l
i

l
i

l xThp . 

Step4 Make crossover operator. If the constraint in step3 is not satisfied, take 
crossover again. 

Step5 Make mutation operator. If the constraint in step3 is not satisfied, take 
mutation again. 

Step6 Compute the fitness of the individual. 
Step7 Select in term of roulette and get the new population. 

Step8 If | f (xt ) - f (xt-1 )| 410   holds, output the current solution, otherwise go 
to Step 2. 

 
According to the our algorithm, two numerical experiments in [5] are test by 

MATLAB in the computer with PIII800, 256MEMS memory. We choose the 
population size is 30，the crossover probability is 0.6 and the mutation probability is 
0.1. 

Example 4.4 Consider the ICC model in which the object is to minimize cx, the 
determined constraint is D= [0, 100]2 and the constraint is 

   ])[( 2211 hxxE , where c=(-1, -2) and 9 . The 1000 realizations of 

),,())(),(( 21 hhT   are sampled from the uniform distribution on [-0.5, 0.5]2
[0,1]. 

In [5], the optimal solution is x̂ = (31.71, 65.58) and f ( x̂ ) = -162.87. While by 

algorithm 4.3, the solution x*= (71.42, 74.11) with 99.8])[( 2211  hxxE   

are got after 98 iteration, which shows x* is very near the borderline of feasible set. 
The objective function  f (x*) = cx*= -219.65 is much better than that in [5] and the 
time cost is only 54 second.  

Example 4.5 (problem generated randomly)  
-- A cost vector c is sampled from the uniform distribution on [-1, 0] n, thus cx will 

be minimized. 
-- The set D equals to [0, 10000] n. 
--Assume there is one random constraint, d% of the components of the n-vector 
)(T  is random, the remaining (100-d)% are deterministic entries. The fixed 

elements are obtained as a sample from the uniform distribution on [-1,1], whereas 
random elements of realizations are sampled from the uniform distribution on [-1,0] 
or [0,1] (d%/2 each way). 

-- Realization hk, kS are sampled from the uniform distribution on [0,1]. 
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-- The probabilities pk, kS are also drawn from the uniform distribution on [0,1] 
(and then normalized). 

-- The risk parameter   takes value of 12.345 for all instances. 

 
Table 1: Results according to our algorithm 

S
n 

|S|=10 |S|=100 |S|=1000 |S|=5000 |S|=1000
0 

2 13 5 12.30 25 7 12.33 21 5 12.33 25 16 12.31 18 16 12.24 
10 17 6.5 12.33 43 13 12.33 40 18 12.34 16 15 12.20 18 25 12.26 
20 38 15 12.34 9 2 12.27 21 7 12.28 30 29 12.32 32 57 12.32 
50 10 1 12.24 10 1 12.25 23 8.5 12.31 19 21 12.27 8 11 12.14 
100 25 11 12.26 35 16 12.29 44 49 12.34 10 18 12.11 8 27 12.26 
200 18 15 12.22 16 14 12.20 21 29 12.14 14 40 12.22 15 83 12.30 

Remark 

a) Each pari of (n, S) corresponds to a tri-group. Where the first data is the 
iteration number, the second is the cost time of seconds, and the third is the value E  

of satisfying solution from which the distance betwwen the satisfying solution to the 
boundary of the feasible set. 

b) For each (n, S), the algorithm runs three times and the average results are given 
in Tab.1.  

c) For thr reason that some coefficient are generated randomly, the satisfying 
solutions can’t be compared. Thus the satisfying solution isn’t list in the Tab.1. 

It is known from the Tab.1 that even for large-scale (n, S), the satisfying solution 
can be found quickly by using our algorithm. But compared with small-scale problem 
about (n, S), the precision decreases and the satisfying solution is near the boundary 
of the feasible set.  

5 Application on Portfolios of Investment 
Let ( , )f x y be a loss function depending upon the decision vector x and a random 

vector y. The decision vector x belongs to a feasible set of portfolios X, satisfying 
imposed requirements. For example, we may consider portfolios with non-negative 
positions. For convenience, we assume that the random vector y has aprobability 

density function ( )P y . Denote by 
( , )

( , ) ( )
f x y

x p y dy





    the probability that the 

loss does not exceed threshold value R  . The value-at-risk (VaR) function 

 ( ) ( ) min : ( , )VaR x x R x          is the percentile of the loss 

distribution with confidence level  [6-8], and is also the smallest number such that 

( , ( , ))x x    . An alternative measure of loss, with more attractive properties, 

is conditional value-at-risk, which is also called Mean-Excess loss, or Tail-VaR 
(under the condition that it exceeds VaR). CVaR is a more consistent measure of risk 
since it is sub-additive and convex[9].  
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1

( , ) ( )
( ) ( ) ( , ) | ( , ) ( ) (1 ) ( , ) ( )

f x y VaR x
CVaR x x E f x y f x y VaR x f x y P y dy

  


  


       

 
VaR and CVaR satisfy10] ( ) arg min ( , )

R
x F x 

 


 , and 

( ) ( , ( ))x F x x    ,  where 1( , ) (1 ) ( ( , ) ) ( )F x L x y P y dy         . 

To compute the Mean-CVaR investment problem, in which only a special case is 
studied about the profit obeying Gaussian distribution[11], we select four stocks 
(601628, 601398, 601600, 600019) from the internet of http://finance.sina.com.cn, 
and the data is the closing price of each day from November 14, 2008 to February 26, 
2009. The value of VaR and CVaR about each stock are computed in table 2 and table 
3. Both tables show that the 601398 is the smallest while the 601628 is largest as risk 
value is considered. 

 
 
 
 
 
 
 
 
 
 
From the analysis above, it is obvious that CVaR is a class of ICC model. Then we 

introduce a smooth convex Mean-CVaR portfolio model as follows. 

4

1

 max

 . . 1

( )

0, 1,2,3,4

T

j
j

j

p x

s t x

CVaR x c

x j






 

 

    


 

As the example above is considered, the random vector is with finite number of 
scenarios.. Applying the algorithm 4.3, with c = 8 and 98%  , the portfolio 
solution is (1, 0, 0, 0) and the optimal objective is 20.9776, which is consistent with 
the real earnings of four stocks.  

6 Conclusion 
This article has outlined a new model of integrated chance constraints. We have 

discussed the charaters, intelligent algorithm and application on CVaR measure. Our 
conclusion of convexity expands the linearity, numerical experiments show that the 
algorithm can efficiently solve ICC model with large scale. Also, as a special ICC, 
CVaR can be handled efficiently by algorithm 4.3, and Mean-CVaR optimal 
portfolios dramatically improves the method in [12], which is helpful to the decision 

Table 2: VaR and CvaR about earnings 

 VaR CVaR 
601628 5.41 6.91 
601398 0.65 0.72 
601600 2.65 3.82 
600019 1.31 1.65 

Table 3: VaR and CvaR about yield rate 

 VaR CVaR 
601628 27.743% 29.655% 
601398 17.361% 17.810% 
601600 23.373% 30.703% 
600019 21.828% 27.435% 
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making. There is room for much improvement and refinement of the considered 
approach. Additional research needs to be conducted on various theoretical and 
numerical aspects of the methodology. 
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