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Abstract The sensitivity of the performance measures such as the mean and the standard deviation
of the queue length and the blocking probability with respect to the moments of the service time
are numerically investigated. The steady state distribution of M/G/c queue is approximated by that
of the M/PH/c queue where the phase type (PH) distribution is fitted by matching the first three
moments of the service times. Approximations are compared with the simulations.
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1 Introduction
Consider the M/G/c queue with Poisson arrivals and c parallel servers of general

service time. Exact methods for the steady state distributions of the M/M/c queue and
M/D/c queue with constant service times are given, e.g. see Tijms [18]. Algorithmic
methods are presented for computing the stationary distributions in M/PH/c queue with
the phase-type (PH) distribution of service time [14, 16, 17]. However, the system in
general is considered to be mathematically intractable. Much effort has been spent on
approximation for the system characteristics such as mean queue length and mean wait-
ing time of the M/G/c queue, cf. [3, 15, 10]. There are various approximations for
the stationary distribution of the queue size. Halachmi and Franta [6], Kimura [9] and
Choi and Shin [5] use the diffusion process for an approximation. Hokstad [7] derive the
approximation formula by using the supplementary variable method. Tijms et al. [19]
provide approximation formulae which are represented in terms of integration and re-
cursive scheme. Miyazawa [13] presents the equations, called the basic equations from
which approximation formula is derived in terms of generating functions. Choi et al [4]
presents an approximation for the steady-state queue length distribution in G/G/c/c+K
using the first two moments of service time.

In the almost all literature mentioned above, the approximation results are compared
with those of the M/PH/c queue for the quality of approximation. The PH distributions
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used for comparisons are selected by the mean and the coefficient of variation (the ratio
of the standard deviation to the mean) of the service time. There may be many PH distri-
butions with the same mean and variance. So, unless the system performance measures
are depend only on the first two moments of the service time, the approximations works
well for some cases but not for other cases even though the service time distributions have
the common mean and variance.

Objective of this paper has two folds. One is to investigate numerically the sensitivity
of the system characteristics such as the mean and the standard deviation of the queue
length and the blocking probability with respect to the moments of the service time. The
other is to propose an approximation of the steady state distribution of the number of cus-
tomers in M/G/c queue. We show numerically that the mean and the standard deviation
of the number of customers in queue are strongly affected by the third moment of the ser-
vice time for some cases. Based on the sensitivity analysis, we approximate the service
time distribution with PH distribution by matching the first three moments of the service
times and use M/PH/c queue for an approximation of M/G/c queue.

In Section 2, the methods of the moment matching with PH distribution are briefly
reviewed. In Section 3, we investigate numerically the sensitivity of some performance
measures. Approximations with numerical results are presented in Section 4. Concluding
remarks are given in Section 5.

2 The moment matching method to PH distributions
A distribution function F(x) on (0, ∞) is said to be of phase type with representation

(ααα,T ) and denote it by PH(ααα ,T ) if

F(x) = 1−ααα exp(T x)eee,

where eee is the column m-vector whose components are all 1, ααα = (α1,α2, ⋅ ⋅ ⋅ ,αm) is a
probability distribution and T = (ti j) is the m×m matrix with tii < 0, 1≤ i≤m and ti j ≥ 0,
i ∕= j, and Teee ≤ 000(∕= 000). For more details about PH-distribution, see [14, Chapter 2].

The phase type (PH) distribution is dense (in the sense of weak convergence) in the set
of all probability distributions on (0, ∞) (e.g. see Asmussen [1, page 84]). There are many
moment matching methods for fitting the general distribution by the PH distributions cf.
Bobbio et al. [2], Johnson and Taaffe [8] and Whitt [20]. In this section we review some
moment matching methods to PH distributions.

Hyperexponential distribution : The hyperexponential distribution of order 2, denoted
by H2(p; µ1,µ2) or simply H2, has the probability density function of the form

f (t) = pµ1e−µ1t +(1− p)µ2e−µ2t .

If a positive random variable X with the first three moments m1, m2 and m3 satisfies the

squared coefficient of variation C2
s =

m2−m2
1

m2
1

> 1 and

m1m3 >
3
2

m2
2, (1)
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then the H2(p; µ1,µ2) density function can be fitted uniquely by the parameters (see [20]
or [18])

µ1,2 =
1
2

(
a1 ±

√
a2

1 −4a2

)
, p =

µ1(1−µ2m1)

µ1 −µ2
, (2)

where

a2 =
6m2

1 −3m2
3
2 m2

2 −m1m3
, a1 =

1
m1

(1+
1
2

m2a2).

The requirement (1) holds for the gamma distribution, lognormal distribution and Weibul
distribution with C2

s > 1.
Coxian distribution with Erlang node : Let Ek(µ) denote the Erlang distribution of

order k with parameter µ . Denote by CEk, j(p; µ1,µ2) the composition of the mixture of
Ek(µ1) and E j(µ2) whose Laplace transform f ∗(s) is given by

f ∗(s) = p
(

µ1

µ1 + s

)k ( µ2

µ2 + s

) j

+(1− p)
(

µ2

µ2 + s

) j

, s ≥ 0.

Bobbio et al. [2] present explicit method to fit the first three moments of a positive
random variable by CE1, j(p; µ1,µ2) and CEk,1(p; µ1,µ2). The formulae for determining
the parameters in [2] are so complicated and are omitted here.

Mixture of Erlang distributions of common order : Johnson and Taaffe [8] provide a
method that a mixture Ek,k(p; µ1,µ2) of two Erlang distributions Ek(µ1) and Ek(µ2) with
probability density function

f (t) = pµ1
(µ1t)k−1

(k−1)!
e−µ1t +(1− p)µ2

(µ2t)k−1

(k−1)!
e−µ2t

can fit the first three moments m1, m2 and m3 of a positive random variable X . The
parameters are given by

µ−1
1,2 =

1
2a

(
−b±

√
b2 −4ac

)
, p =

µ1 −µ1µ2m1/k
µ2 −µ1

,

where

a = k(k+2)m1y, b =−
(

kx+
k(k+2)

k+1
y2 +(k+2)m2

1y
)
, c = m1x,

y = m2 −
(

k+1
k

)
m2

1, x = m1m3 −
(

k+2
k+1

)
m2

2.

3 Sensitivity of M/G/c queue
Consider the M/G/c queue where customers arrive according to a Poisson process

with rate λ and the service times of the customers are independent and identically dis-
tributed. Let S be the service time of a customer whose distribution function is G(x) and
assume that G(0) = 0, mk = E(Sk)< ∞, k = 1,2,3. We also assume ρ = λm1

c < 1 for the
stability of the system. Let Xs and Xq be the number of busy servers and customers waiting
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Table 1: Sensitivity of P0 and PBin M/G/3 queue with m1 = 1.0
ρ

G C2
s m3 m4 0.3 0.5 0.7 0.9

P0(M) and P0(M)−P0(G)

M 1.0 6.0 24.0 0.4035 0.2105 0.0957 0.0249
E2 0.5 3.0 7.5 0.0006 0.0015 0.0018 0.0009

CE2,1 0.5 3.0 13.1 0.0006 0.0016 0.0020 0.0010
CE1,3 0.5 10.0 454.1 0.0009 0.0021 0.0026 0.0013

H2 2.0 18.0 162.0 -0.0008 -0.0024 -0.0029 -0.0015
H2 2.0 18.0 153.1 -0.0010 -0.0031 -0.0040 -0.0021
H2 2.0 100.0 11095.3 -0.0001 -0.0007 -0.0009 -0.0004

CE1,2 5.0 300.0 24533.6 -0.0006 -0.0026 -0.0039 -0.0016
H2 5.0 300.0 26724.0 -0.0008 -0.0031 -0.0042 -0.0019
H2 5.0 60.0 804.0 -0.0007 -0.0022 -0.0029 -0.0017

PB(M) and PB(M)−PB(G)

M 1.0 6.0 24.0 0.0700 0.2368 0.4923 0.8171
E2 0.5 3.0 7.5 0.0009 0.0030 0.0043 0.0026

CE2,1 0.5 3.0 13.1 0.0009 0.0032 0.0046 0.0028
CE1,3 0.5 10.0 454.1 0.0013 0.0043 0.0061 0.0037

H2 2.0 18.0 162.0 -0.0012 -0.0042 -0.0061 -0.0034
H2 2.0 18.0 153.1 -0.0016 -0.0055 -0.0076 -0.0044
H2 2.0 100.0 11095.3 -0.0002 -0.0010 -0.0017 -0.0005

CE1,2 5.0 300.0 24533.6 -0.0006 -0.0033 -0.0061 -0.0029
H2 5.0 300.0 26724.0 -0.0011 -0.0046 -0.0076 -0.0038
H2 5.0 60.0 804.0 -0.0018 -0.0061 -0.0091 -0.0044

in queue of the M/G/c queue in steady state, respectively and set Ls =𝔼(Xs), Lq =𝔼(Xq).
By σs and σq, denote the standard deviation of Xs and Xq, respectively. It follows from
Little’s formula that Ls = λm1 does not depend on the second or the higher moments of
the service time. For the single server case, it can be easily seen from Pollaczek-Khinchin
transform equation, c.f. [12], that Lq depend only on the arrival rate λ and the first two
moments m1 and m2 of the service time and σq is determined by λ and mk, k = 1,2,3. It
is also known that the steady state distribution of the number of busy servers in M/G/∞
queue is given in terms of λ and m1 (e.g. [18]).

In this section, we investigate numerically how σs, Lq, σq, P0 = ℙ(Xs = 0) and the
blocking probability PB = ℙ(Xs = c) are affected by the moments of the service time. For
this one, we fix m1 = 1.0 and consider the three cases of squared coefficient of variation
of the service time C2

s = 0.5,2.0,5.0.
In Tables 1-2, the values of P0, PB and σs are compared with those of the system

with exponential service time (M). In Table 1, P0(G) and PB(G) denote the P0 and PB,
respectively, of the system with service time distribution G and σs(G) in Table 2 is defined
analogously. The numerical results of the row corresponding to M in Tables 1-2 present
the values of P0(M), PB(M) and σs(M), respectively and other results are the difference
between the results of service times M and G. Tables 1-2 shows that P0, PB and σs are
affected weakly by the second or the higher moments of the service time which is expected
from the results for the system with c = 1 and c = ∞. The effects of the moments of the
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Table 2: Sensitivity of σs in M/G/3 queue with m1 = 1.0 (σs(M) and σs(M)−σs(G))
ρ

G C2
s m3 m4 0.3 0.5 0.7 0.9

M 1.0 6.0 24.0 0.9149 1.0699 1.0325 0.7028
E2 0.5 3.0 7.5 0.0016 0.0042 0.0060 0.0049

CE2,1 0.5 3.0 13.1 0.0018 0.0045 0.0064 0.0053
CE1,3 0.5 10.0 454.1 0.0024 0.0061 0.0085 0.0071

H2 2.0 18.0 162.0 -0.0022 -0.0061 -0.0087 -0.0070
H2 2.0 18.0 153.1 -0.0039 -0.0080 -0.0114 -0.0092
H2 2.0 100.0 11095.3 -0.0004 -0.0016 -0.0025 -0.0017

CE1,2 5.0 300.0 24533.6 -0.0013 -0.0055 -0.0096 -0.0064
H2 5.0 300.0 26724.0 -0.0020 -0.0071 -0.0113 -0.0081
H2 5.0 60.0 804.0 -0.0027 -0.0077 -0.0115 -0.0101

Table 3: Effects of service time to Lq in M/G/3 queue with m1 = 1.0
ρ

G C2
s m3 m4 0.3 0.5 0.7 0.9

E2 0.5 3.0 7.5 0.0240 0.1844 0.8778 5.5440
CE2,1 0.5 3.0 13.1 0.0241 0.1846 0.8784 5.5449
CE1,3 0.5 10.0 454.1 0.0222 0.1711 0.8379 5.4830

H2 2.0 18.0 162.0 0.0385 0.3228 1.6420 10.884
H2 2.0 18.0 153.1 0.0371 0.3165 1.6263 10.855
H2 2.0 100.0 11095.3 0.0311 0.2588 1.4331 10.589

CE1,2 5.0 300.0 24533.6 0.0329 0.3456 2.3582 20.242
H2 5.0 300.0 26724.0 0.0382 0.3791 2.4719 20.445
H2 5.0 60.0 804.0 0.0814 0.6692 3.3428 21.869

service time distribution to Lq and σq are investigated in Tables 3-4. Tables 3 shows that
Lq is sensitive to the second and the third moments for small values of ρ and the sensitivity
to the third moment decreases as ρ increases. We can see from Table 4 that σq depend
strongly on the third moment m3.

It follows from Tables 1-4 that the approximation of the distribution of Xs in M/G/c
queue using M/M/c queue seems to be adequate for practical purpose but the third mo-
ment m3 should be considered for an accurate approximation of Lq and σq.

4 Approximations
In this section we describe the approximation procedure and make some numeri-

cal comparisons for M/G/3 queue. Two service time distributions, Weibul distribution
Weib(α,β ) and lognormal distribution LN(µ ,σ2) are considered. For an approximation,
we first choose an appropriate PH distribution by fitting the first three moments of the
service time and then compute the performance characteristics of the approximating sys-
tem. In order to fit the first three moments of the service time distribution with C2

s < 1,
we adopt the method in Bobbio et al. [2] and for C2

s > 1, the formula (2) is used.
Approximations are compared with the simulation results in Tables 5-6. The perfor-

mance measures for the approximating systems are computed by the matrix geometric
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Table 4: Effects of service time to σq in M/G/3 queue with m1 = 1.0
ρ

G C2
s m3 m4 0.3 0.5 0.7 0.9

E2 0.5 3.0 7.5 0.1967 0.6487 1.7642 6.9935
CE2,1 0.5 3.0 13.1 0.1967 0.6488 1.7642 6.9935
CE1,3 0.5 10.0 454.1 0.1857 0.6163 1.8152 7.7224

H2 2.0 18.0 162.0 0.2953 1.1122 3.3341 13.956
H2 2.0 18.0 153.1 0.2929 1.1110 3.3353 13.957
H2 2.0 100.0 11095.3 0.2449 0.9557 3.6256 17.847

CE1,2 5.0 300.0 24533.6 0.3285 1.7477 7.0468 33.264
H2 5.0 300.0 26724.0 0.3423 1.7516 7.0343 33.273
H2 5.0 60.0 804.0 0.5445 2.1025 6.3533 27.151

method [14]. Simulation models are developed with ARENA. Simulation run time is set
to 80,000 unit times including 20,000 unit times of warm-up period, where the expected
value of service time is one unit time. We used different random number streams for the
distributions of inter-arrival times, service times. Ten replications are conducted for each
case and the average value and the half length of 95% confidence interval are obtained.

The probability density function of Weibul distribution Weib(α ,β ) is given by

f (x) =
β
α

(
x
β

)α−1

exp
[
−
(

x
β

)α]
, x > 0

and the kth moment mk and the squared coefficient of variations C2
s are given by

mk =
kβ k

α
Γ
(

1
α

)
, k = 1,2, ⋅ ⋅ ⋅ , C2

s =
2α

Γ
( 1

α
) −1.

Thus Weib(α ,β ) is uniquely determined by the first two moments m1 and m2 or equiva-
lently m1 and C2

s . If m1 = 1, then β = α/Γ(1/α) and

mk =
k
2
(1+C2

s )
k−1, k = 1,2, ⋅ ⋅ ⋅ .

In Table 5, for an approximation of Weib(α,β ) with the (m1,C2
s ) pair (1.0,0.5),

(1.0,2.0) and (1.0,5.0) we respectively use the following distributions

CE2,1(0.751282;2.88098,2.09007) with m̂4 = 11.1086 (m4 = 6.79478),
H2(0.658726;2.0365,0.504441) with m̂4 = 127.414 (m4 = 136.423),
H2(0.908248;1.8165,0.183503) with m̂4 = 1944.0 (m4 = 2520.0),

where m̂4 and m4 are the fourth moments of approximating distribution and Weib(α ,β )
distribution, respectively.

The probability density function of lognormal distribution LN(µ ,σ2) is given by

f (x) =
1√

2πσx
exp

(
− (lnx−µ)2

2σ2

)
, x > 0
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and the kth moment mk and the squared coefficient of variations C2
s are given by

mk = exp
(

kµ +
1
2

k2σ2
)
, k = 1,2, ⋅ ⋅ ⋅ , C2

s = exp(σ2)−1.

Thus LN(µ ,σ2) is uniquely determined by m1 and C2
s . If m1 = 1, then µ =−σ2/2 and

mk =
k
2
(1+C2

s )
k(k−1)/2, k = 1,2, ⋅ ⋅ ⋅ .

In Table 6, for an approximation of LN(µ,σ2) with the (m1,C2
s ) pair (1.0,0.5),

(1.0,2.0) and (1.0,5.0) we respectively use the following distributions

CE1,3(0.116747;0.950128,3.42026) with m̂4 = 11.2631 (m4 = 11.3906),
H2(0.971405;1.13807,0.195262) with m̂4 = 485.994 (m4 = 729.0),
H2(0.99075;1.15827,0.06395) with m̂4 = 13284.0 (m4 = 46656.0),

where m̂4 and m4 are the fourth moments of approximating PH distribution and lognormal
distribution, respectively.

For the accuracy of the simulation, the comparisons with the exact results for Ls are
presented in Tables 5-6. Numerical results show that the approximations work well for
small value of C2

s and for large C2
s , the approximations improves as ρ increases.

5 Conclusions
We have investigated numerically the effects of the moments of the service time to

the performance measures related with the number Xs of busy servers and the number Xq
of customers in queue in M/G/c queue. Numerical experiments show that the effect of
the third moment of the service time to the mean queue length Lq is not negligible for ρ
small and C2

s large and the standard deviation σq of Xq is strongly affected by not only the
second moment but also the third moment of the service time, while the distribution of Xs
is less sensitive to the second or higher moment of the service time than Xq.

We approximate the M/G/c queue by M/PH/c queue where the PH distribution is
affected by the first three moments of the service time. Numerical experiments leads to
approximations that are significantly accurate for wide range of service times.

The method to approximate the multi server queue by fitting the service time with PH
distributions requires relatively long computation times, which often restricts the number
of servers and the number of phases of PH distribution. However, the many distributions
with C2

s not close to 0 arising in practical situation can be fitted by the PH distribution with
the moderate number of phases which reduces the computational problem. For example,
the many distributions with C2

s > 1 can be fitted by the H2 distribution and the matrix
components of the generator of the quasi-birth-and-death process corresponding to the
system M/H2/c queue is c+ 1. This research is expected to be a preliminary step to
apply the method to the variants of the basic M/G/c queue like the queue with retrials.
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Table 5: Approximation of M/Weib(α,β )/3 queue with m1 = 1.0
C2

s ρ Ls σs Lq σq P0 PB
0.5 0.3 App 0.9000 0.9130 0.0243 0.1980 0.4028 0.0690

Sim 0.8990 0.9121 0.0240 0.1968 0.4029 0.0687
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(c.i.) ±0.0080 ±0.0076 ±0.2156 ±0.3667 ±0.0007 ±0.0050
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Sim 0.9023 0.9182 0.0416 0.3060 0.4035 0.0717
(c.i.) ±0.0055 ±0.0033 ±0.0021 ±0.0123 ±0.0022 ±0.0014

0.5 App 1.5000 1.0758 0.3303 1.1206 0.2127 0.2410
Sim 1.5000 1.0746 0.3358 1.1201 0.2123 0.2402
(c.i.) ±0.0083 ±0.0015 ±0.0053 ±0.0216 ± 0.0023 ±0.0028

0.7 App 2.1000 1.0410 1.6613 3.3200 0.0984 0.4984
Sim 2.1008 1.0385 1.6538 3.2444 0.0975 0.4974
(c.i.) ±0.0080 ±0.0026 ±0.0485 ±0.1331 ±0.0014 ±0.0037

0.9 App 2.7000 0.7098 10.919 13.862 0.0263 0.8205
Sim 2.6999 0.7077 10.897 13.759 0.0259 0.8196
(c.i.) ±0.0072 ±0.0079 ±0.7291 ±1.3317 ±0.0009 ±0.0040

5.0 0.3 App 0.9000 0.9197 0.0612 0.4841 0.4051 0.0728
Sim 0.9038 0.9209 0.0707 0.4964 0.4038 0.0730
(c.i.) ±0.0082 ±0.0042 ±0.0042 ±0.0281 ±0.0032 ±0.0019

0.5 App 1.5000 1.0838 0.5616 2.0338 0.2157 0.2466
Sim 1.5002 1.0805 0.6034 2.0042 0.2144 0.2445
(c.i.) ±0.0116 ±0.0014 ±0.0232 ±0.1024 ±0.0034 ±0.0036

0.7 App 2.1000 1.0529 3.0630 6.5095 0.1026 0.5067
Sim 2.1002 1.0465 3.1076 6.2164 0.1001 0.5027
(c.i.) ±0.0100 ±0.0031 ±0.1615 ±0.4208 ±0.0017 ±0.0047

0.9 App 2.7000 0.7196 21.360 28.058 0.0286 0.8253
Sim 2.6995 0.7145 21.521 27.961 0.0273 0.8226
(c.i.) ±0.0108 ±0.0110 ±2.4488 ±4.3256 ±0.0011 ±0.0060
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Table 6: Approximation of M/LN(α ,β )/3 queue with m1 = 1.0
C2

s ρ Ls σs Lq σq P0 PB
0.5 0.3 App 0.9000 0.9133 0.0233 0.1933 0.4030 0.0691

Sim 0.8988 0.9124 0.0230 0.1916 0.4032 0.0688
(c.i.) ±0.0033 ±0.0016 ±0.0005 ±0.0035 ±0.0015 ±0.0007

0.5 App 1.5000 1.0658 0.1810 0.6440 0.2092 0.2338
Sim 1.4999 1.0660 0.1811 0.6485 0.2092 0.2340
(c.i.) ±0.0047 ±0.0015 ±0.0050 ±0.0226 ±0.0017 ±0.0017

0.7 App 2.1000 1.0266 0.8694 1.7703 0.0940 0.4880
Sim 2.1005 1.0275 0.8770 1.7847 0.0943 0.4890
(c.i.) ±0.0072 ±0.0026 ±0.0198 ±0.0544 ±0.0013 ±0.0032

0.9 App 2.7000 0.6978 5.5294 7.0386 0.0240 0.8144
Sim 2.6990 0.6992 5.5730 7.1301 0.0244 0.8141
(c.i.) ±0.0082 ±0.0078 ±0.2390 ±0.4443 ±0.0006 ±0.0051

2.0 0.3 App 0.9000 0.9165 0.0349 0.2747 0.4041 0.0709
Sim 0.9026 0.9188 0.0363 0.2812 0.4036 0.0720
(c.i.) ±0.0059 ±0.0033 ±0.0019 ±0.0127 ±0.0024 ±0.0014

0.5 App 1.5000 1.0748 0.2990 1.0737 0.2126 0.2401
Sim 1.5004 1.0760 0.3028 1.0652 0.2130 0.2411
(c.i.) ±0.0079 ±0.0013 ±0.0068 ±0.0339 ±0.0020 ±0.0027

0.7 App 2.1000 1.0396 1.5756 3.3942 0.0982 0.4972
Sim 2.1004 1.0412 1.5598 3.2883 0.0987 0.4987
(c.i.) ±0.0078 ±0.0025 ±0.0603 ±0.2128 ±0.0014 ±0.0037

0.9 App 2.7000 0.7082 10.772 14.461 0.0261 0.8197
Sim 2.6996 0.7097 10.805 14.666 0.0264 0.8201
(c.i.) ±0.0076 ±0.0081 ±0.9843 ±2.3320 ±0.0009 ±0.0043

5.0 0.3 App∗ 0.9000 0.9176 0.0418 0.3735 0.4046 0.0715
Sim 0.9043 0.9216 0.0554 0.4190 0.4038 0.0734
(c.i.) ±0.0085 ±0.0044 ±0.0035 ±0.0296 ±0.0034 ±0.0020

0.5 App 1.5000 1.0789 0.4174 1.8319 0.2143 0.2428
Sim 1.5008 1.0828 0.4972 1.7998 0.2153 0.2461
(c.i.) ±0.0106 ±0.0013 ± 0.0195 ± 0.1147 ± 0.0029 ± 0.0034

0.7 App 2.1000 1.0465 2.6156 6.8781 0.1009 0.5018
Sim 2.0997 1.0499 2.8525 6.8082 0.1016 0.5045
(c.i.) ±0.0101 ±0.0029 ±0.3057 ±1.4804 ±0.0017 ±0.0049

0.9 App 2.7000 0.7134 20.624 31.331 0.0273 0.8221
Sim 2.6989 0.7176 21.579 32.641 0.0281 0.8234
(c.i.) ±0.0117 ±0.0119 ±3.7717 ±9.3426 ±0.0012 ±0.0067
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