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Abstract In this paper, we address the scheduling problem involving batch processing machines.
The presented mixed integer programming formulation first provides an elegant model for the prob-
lem under study. Furthermore, it enables solutions to the problem instances beyond the capability of
exact methods developed so far. In order to alleviate computational burden, we propose MIP-based
approaches which balance solution quality and computing time.
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1 Introduction
In the last decades, numerous researchers have developed significant interest in schedul-

ing problems with batching decisions, the benefits of which consist in a remarkable re-
duction of setup times as well as improved throughput rate [6]. In this regard, one dis-
tinct situation for applying batching is characterized by the adoption of batch processing
machines in the production system, which is also known as parallel batching. A batch
processing machine can accommodate and process several jobs simultaneously in a batch.
Batch processing times usually depend on the jobs constituting the corresponding batch.
These machines are integral parts of many industrial environments such as burn-in op-
erations in a steel foundry, environmental stress screening chambers, electrical circuits
tests, and chemical processes performed in tanks or kilns [3]. As another example, the
wafer fabrication process being one of the most important components in semiconductor
manufacturing can also be modelled as shop floor process with various inter-connected
batch processing machines, so that wafer-lots are transferred through stages including
oxidation, deposition, diffusion, etching and ion implantation.

To date, parallel batching related publications mostly focus on single machine cases.
There are several reference works in the literature considering flow shop problems with
limited number of batch processing machines. [1] addresses two- or three-stage flow shop
problems with one batch processing machine involved. A full complexity classification
with the performance measures of the total completion times and the makespan is pro-
vided as well. [7] considers the problem of scheduling independent jobs on two batch
processing machines in an open shop, a job shop and a flow shop environment. There is
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either no restriction on the size of a batch on a machine, or a machine can process only
a bounded number of operations in one batch. For most of the possible combinations of
restrictions, the authors provide the complexity status of the associated problem.

Motivated by practical relevance, the purpose of our study is to solve the scheduling
problem involving a flow shop of batch processing machines. The coming section first
presents two MIP formulations complete with a precise evaluation. In solving larger in-
stances with limited computational resource, various MIP-based approaches are proposed
and tested. Some concluding remarks are given in section 5.

2 MIP Formulations
[4] and [5] present MIP formulations for the flow shop problem with two batching

machines, where solutions are restricted to consistent batches and permutation schedules.
That is, the operations incorporated in a batch remain unchanged over all machines. In
both studies, a binary variable is used which indicates whether or not a batch is assigned to
a specific position in the sequence. However, this is unsuitable while considering multi-
machine systems with non-permutation schedules. Therefore, a new binary variable is
introduced with

γbck =

{
1 , if batch b is processed prior to batch c on Mk,
0 , otherwise.

Other related parameters and variables are given in the following:
b,c = 1, . . . , b̄ batch indices
i = 1, . . . ,n job index
k = 1, . . . ,m machine index
Bbk batch b on machine k
Cmax makespan
pik processing time of job i on machine k
S machine capacity (the maximal number of jobs incorporated in a

batch)
tbk start time of batch b on machine k
t ′ik start time of job i on machine k
Tbk end time of batch b on machine k
δibk binary variable, takes the value 1 if job i belongs to batch b on

machine k

2.1 Adopting Consistent Batches
Flow shop problems involving batch processing machines can thus be formulated as

follows:
minCmax. (1)
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Subject to:

n

∑
i=1

δib ≤ S ∀b, (2)

b̄

∑
b=1

δib = 1 ∀i, (3)

Tbk ≥ tbk +max
i

{δib ⋅ pik} ∀b,k, (4)

tbk ≥ Tck − γbckH ∀b ∕= c,k, (5)
tck ≥ Tbk − (1− γbck)H ∀b ∕= c,k, (6)
tb(k+1) ≥ Tbk ∀b,k < m, (7)
Cmax ≥ Tbm ∀b. (8)

As a result of requiring consistent batches, the binary variable δibk reduces to δib. Con-
straints (2) indicate that the maximal number of jobs incorporated in a batch does not
exceed machine capacity S. Constraints (3) ensure that each job is assigned to one and
only one batch. Since batch formation remains identical over all stages, the emphasis is
then placed on determining batch sequences. According to (4), the completion time of
batch b is determined by its start time and the largest processing time of all jobs belong-
ing to batch Bbk. Constraints (5) and (6) are then employed to prevent batch overlapping.
Constraints (7) describe the flow shop scheduling environment, where the processing of
jobs follows the same technological order. In terms of constraints (8), makespan is defined
as the largest completion time of all batches on the last machine m.

2.2 Adopting Inconsistent Batches
Based on the model presented above, a generalized formulation adopting inconsistent

batches is given in the following:

minCmax (9)
n

∑
i=1

δibk ≤ S ∀b,k, (10)

b̄

∑
b=1

δibk = 1 ∀i,k, (11)

Tbk ≥ tbk +max
i

{δibk ⋅ pik} ∀b,k, (12)

t(b+1)k ≥ Tbk ∀k,b < b̄, (13)

tbk ≥ t ′ik ⋅δibk ∀b,k, (14)
t ′i(k+1) ≥ Tbk ⋅δibk ∀i,b,k < m, (15)
Cmax ≥ Tb̄m. (16)

Constraints (10)–(12) are the simple extensions of constraints (2), (3) and (4). Moreover,
binary variable γbck can be safely dropped, since batches with the same index (b) on differ-
ent machines are allowed to accommodate different jobs. In order to avoid overlapping,
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constraints (5) and (6) can be reduced to (13). Although the sequence of batches is prede-
termined here, this formulation does not lose its generality since the contents of a batch
may vary over stages.

Special attention must be drawn to the start time of batches. By the very nature of
inconsistent batches, the start time of batch Bb(k+1) is not necessarily restrained by the
completion time of Bbk. Therefore, the start time of each batch depends on all jobs in-
cluded in the corresponding batch. Constraints (15) determine the start time of each job
on the successive machine. Combing with constraints (14), a batch thus cannot begin
its processing until all jobs assigned to this batch become available. According to (16),
makespan is then defined by the last batch scheduled on the last machine (Bb̄m). In addi-
tion, the formulation can be applied to single machine cases by omitting machine index
k.

2.3 Evaluating MIP formulations
An exact evaluation of the formulation with batching machines presented in the pre-

vious subsection can be found in table 1, in terms of the number of variables, constraints
and nonzeros. Examples of several problem classes are given in table 2.

Table 1: Evaluation of the formulation with batching machines
Variables Binary b̄mn Real 2b̄m+mn+1
Total b̄mn+2b̄m+mn+1

Constraints (10) b̄m (14) b̄mn

(11) mn (15) b̄n(m−1)
(12) b̄m (16) 1
(13) (b̄−1)m

Total 2b̄mn+(3b̄−1)m+mn− b̄n+1

Nonzeros (10) b̄mn (14) 3b̄mn

(11) b̄mn (15) 3b̄n(m−1)
(12) b̄m(n+2) (16) 2
(13) 2(b̄−1)m

Total 9b̄mn+(4b̄−2)m−3b̄n+2

3 MIP-Based Approaches
Since commercial solvers are only capable of handling small instances, it is of inter-

est to generate satisfying solutions using limited computational resource. Based on the
developed MIP-formulations, various relaxations and heuristic rules can be incorporated
to reduce solution spaces and to accelerate solution progress.

Considering Permutation Schedules
Note that one of the most important decision variables in these formulations is the

binary variable γbck. Therefore, a promising method consists in reducing the number of
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Table 2: Examples of problem sizes
m ⋅n

(
b̄
)

Variables Constraints Nonzeros Density
3 ⋅3 (3) 55 81 252 0.0566
4 ⋅4 (4) 113 176 592 0.0298
5 ⋅5 (5) 201 325 1150 0.0176
6 ⋅6 (6) 325 540 1980 0.0113

10 ⋅3 (10) 391 620 2520 0.0104
10 ⋅4 (10) 521 860 3460 0.0077
20 ⋅5 (20) 2301 4000 17200 0.0019
20 ⋅6 (20) 2761 4880 20880 0.0015

binary variables to be determined. In a permutation flow shop environment, job sequences
remain consistent throughout all stages. Thus, imposing this assumption in the formula-
tion reduces γbck to γbc. Actually, flow shop scheduling is greatly desired in numerous
manufacturing industries [8]. The permutation schedule requirement in flow shops is also
fairly realistic since it can be costly to change batch composition between machines [2].

Incorporating Upper and Lower Bounds
Since most commercial solvers are based on the principle of branch and bound method,

upper and lower bounds can be introduced in the formulation so that solution space is ef-
fectively reduced. The efficiency of this approach is also confirmed in the literature [5].

Upper bounds can be calculated by applying heuristic rules or constructive algorithms,
such as shortest processing time (SPT), longest processing time (LPT), earliest due date
(EDD). Assigning jobs to batches may follow the first-first (FF) rule, in which the first
available job is grouped into the first batch with sufficient capacity. Generally, such ap-
proach can be executed in O(mn logn) time. Large instances can also be solved in fraction
of second.

On the other hand, dropping certain constraints can attain lower bounds on the un-
derlying problem. For example, batch size violation may first be ignored. Preemption
of jobs can be introduced by discarding constraints determining operation sequences. In
addition, a multi-machine problem can be decomposed into single machine cases with
properly defined parameters. Solving each single machine problem then provides a valid
lower bound on the original problem.

Simplifying the Batching Phase
The batch formation problem is actually equivalent to a bin-packing problem which

is also known to be N P-hard [4]. It is therefore helpful to simplify the procedure
of batching. Note that utilizing as much space as possible in a batch may maximize
efficiency in flow shops. Therefore, jobs can be sorted in SPT order and assigned to
batches according to their priorities. A new batch is constructed once the previous one is
fully occupied. In consequence, jobs with similar processing durations are grouped into
the same batch, which can effectively reduce machine idle times.
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Simplifying the Scheduling Phase
Note that variable δibk is predetermined due to the given partition of batches. This

significantly reduces the complexity of the problem under study. Since job sequences
within each batch are not decision relevant, the problem is actually transformed to finding
an ordered collection of batches – the batch sequencing problem. The structure of the
model is as follows:

tbk ≥ Tck − γbck ⋅H (17)
tck ≥ Tbk − (1− γbck) ⋅H. (18)

4 Computational Results
The developed MIP formulation is implemented in Lingo 9.0. Although only small

instances can be solved to optimality, the solvable problem size already exceeds the exact
methods such as branch and bound, dynamic programming proposed in the literature.

As mentioned earlier, most existing studies focused on single machine cases, for
which an optimal solution can be obtained efficiently using the proposed MIP formula-
tion. Furthermore, the models available in the literature are only capable of handling two
machine permutation flow shops. Our formulation, however, can be applied to general
multi-machine problems.

First, consider a single machine example where 10 jobs are to be scheduled. Process-
ing times are given in table 3. As illustrated in figure 1, if a batch is allowed to contain

Table 3: Data (example with 1 batching machine)
Job index i 1 2 3 4 5 6 7 8 9 10
Processing time pi 2 4 6 6 8 2 4 10 4 2

at most 3 jobs, the maximal and total completion times are 24 and 90, respectively. If 4
jobs can be incorporated in a batch, the associated objective values are reduced to 16 and
88. The solution structure also becomes apparent through this example, where jobs are
processed in SPT order. To maximize machine utilization, it is obviously preferable to
group jobs with similar processing durations into the same batch. This complies exactly
with the principle of simplifying the batching phase.

Next, a flow shop example with 4 jobs and 4 batching machines is examined. Table
4 gives the corresponding processing times. Assume that one batch can include at most

Table 4: Processing times (example with batching machines in flow shop)
Job index i 1 2 3 4
Processing time pi1 1 9 8 3

pi2 6 10 9 5
pi3 3 8 2 7
pi4 7 5 8 9

2 jobs. The test result is a permutation schedule as shown in figure 2. Due to the limited
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Figure 1: Example with 1 batching machine (total completion time)

capacity of batches, jobs to be scheduled must be split into two batches. To minimize pro-
cessing delay, the first batch on the first machine is thus constructed with batch processing
time smallest possible.

Figure 2: Flow shop example with batch processing machines (S = 2)

On the basis of the MIP formulation with flow shop batching machines, the ap-
proaches proposed above are implemented and tested on specific problem sets with Lingo
9.0. Each problem class contains 10 randomly generated instances and the average com-
puting time required is reported in table 5.

Note that the problem class with 10 jobs on 4 machines is not solvable in reasonable
amount of computing time. By limiting solutions to permutation flow shops, moderate-
sized instances can be solved efficiently. An optimal schedule with 10 jobs on 4 batch
processing machines can be obtained within 1 minute. For example, a solution with the
makespan of 44 is shown in figure 3 where sequences remain unchanged over all stages.
In comparison, figure 4 depicts a non-permutation schedule with the makespan of 46,
which is the current best one after running Lingo 9.0 for 41 hours. Jobs belonging to the
same batch on machine 1 are highlighted with the same shade, which clearly shows the
variation of batches on different machines.

In summary, MIP-based approaches enable solutions to moderate-sized problem in-
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Table 5: Computing time for MIP-based approaches (in s)
n ⋅m Simplifying scheduling Simplifying batching Consistent batches

and permutation schedules

6 ⋅4 14 10 5
10 ⋅4 64 48 30
10 ⋅5 201 70 33
10 ⋅10 371 244 93

stances which remain unsolvable so far. Due to the integration of heuristic rules that are
widely applied and favourable in the practice, a balance between solution quality and
computing time can be achieved.

5 Conclusions
This paper deals with the flow shop scheduling problem involving batch processing

machines. The presented mixed integer programming formulation not only extends the
existing models in the literature, but also enables solutions to the problem instances be-
yond the capability of exact methods developed so far. We further propose MIP-based
approaches combining some well-performing heuristic rules. Computational results also
confirm the substantial reduction of computing time. For future studies, more sophis-
ticated methods, such as a hierarchical structure, can be utilized to develop MIP-based
approaches.
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