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Abstract Many of air cargo companies adapt the hub-and-spokes system where economies of
scale exist in the transportation cost. In this paper, we formulate economies of scale using nonlinear
cost function of distances and demands, and analyze how the change of the transportation cost
affects single hub location of air cargo using the generalized Weber problem on the regular demand
points of one and two-dimensional region and the actual location of airport in East Asia. The
optimal location will move to the largest demand points as the economies of scale in distances
become larger or the economies of scale in demands become smaller. We confirm economies of
scale in both distances and demands from the parameters estimated by the actual transportation cost
in East Asia and find the optimal hub location of air cargo.
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1 Introduction
Many of airlines adapt the hub-and-spokes system where economies of scale exist in

the transportation cost. Most of the air cargo airlines have a single hub airport in United
States while most of passenger airlines have a few hub airports. O’Kelly[7] formulated
the hub location problem of airline using the Weber model and showed that the optimal
point locates in mid-west area of United States that many hub of air cargo initially located.
Watanabe et al.[9] analyzed how the change of the transportation cost affects single hub
location of air cargo in the United States using the generalized Weber problem. Recent lit-
eratures mainly formulate as the discrete facility location problem using the mathematical
programming model, but the Weber model can be locatable in continuous plane.

The Weber problem is famous for Weberian location triangles in the Industrial location
theory as shown in Fig.1, and is to find a location of a facility which minimizes the
weighted sum of Euclidean distances to a set of demand points[6]. This mini-sum point
is usually called as the Weber point and there is a minimum demand condition where
Weber point is the absorbed solution[8] which locate on the exist demand point. Recently,
effective algorithm for the generalized Weber problem has developed[3]. There are many
researches whose transportation cost is nonlinear functions with respect to the Euclidean
distances, but demands are also need to be nonlinear functions.
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In addition, analyzing the change of the transportation cost is very important because
the transportation cost has been greatly influenced by the sudden rise in the fuel price in
this decade. There are volume-related rates and distance-related rates in tranportation[2],
so it’s important to formulate transportation cost of air cargo using nonlinear function of
demand and distance[4]. We treat the air cargo rates as the transportation cost and will
estimate the transportation cost function from actual rates.

In this research, we are to find a location of a hub airport which minimizes the
weighted sum of transportation cost which is power function of the Euclidean distances
and demands to a set of demand points. We analyze how the change of the transportation
cost affects a single hub location on regular demands in one and two-dimensional region.
As case study, we apply this model to find the optimal location of hub using the actual
handling data of air cargo in East Asia.

2 Model Description
We formulate as continuous single-facility location problem using nonlinear cost func-

tion which the marginal cost decreases as distance or demands increases.
Let P1,..., Pn be distinct demand points when n is the total number of airports. Let qi be

the demand of i-th demand point. The coordinates of the demand point is (xi,yi) and that
of the optimal point is (x,y). K is the coefficient of the fixed cost and α is the elasticity of
demand and β is the elasticity of distance. Objective function is the total transportation
cost C and may be formulated as follows:

min
x,y

C = K
n

∑
i=1

qi
α li(x,y)

β (1)

where li(x,y)=
√
(x− xi)2 +(y− yi)2 is the Euclidean distance between (x,y) and (xi,yi).

We will explain basic feature of Eq.(1) using Fig.2. When α is equal to one, we get
linear function of demand. If α is less than one, we get concave function, otherwise
convex function. This is the same for β . We can explain original Weber problem when
bpth α and β is equal to one.

Weber point

P1

P2

P3

Figure 1: Weber problem
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Figure 2: Nonlinear function
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3 Analysis on Regular point
3.1 One-dimensional linear region with two demand points

At first, we consider the linear region whose length is L with two demand points A
and B on both ends. Let the demand on the point A and B is q1 and q2 respectively, and
q2 is larger than q1. From Eq.(1), we can formulate as follows:

min
x

C = K
2

∑
i=1

qi
α li(x)

β

= K{q1
α xβ +q2

α(L− x)β}. (2)

After solving the first derivative of this expression with respect to x, we can get the optimal
location as follows:

x∗ =
L

1+(q1/q2)
α

β−1
. (3)

We substitute L = 10000 for lentgh and q1 = q, q2 = 2q(q= 10000) for the parameters
of demands. We can plot the ordinate of optimal point in Fig.3. The optimal point moves
to the center of line as α become smaller, if β is greater than one. On the other hand, the
optimal point is on the largest demand point B, if β is less than one.
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Figure 3: Optimal point in one-dimensional linear region

3.2 Two-dimensional triangle region with three demand points
Next, we consider the triangle region whose length of each sides is L with three de-

mand points on each vertices A, B and C. The coordinates of point A, B and C become
(0,0), (0,L) and (L/2,

√
3L/2) respectively. Let the demand on point A, B and C is q1, q2

and q3 respectively, and q3 is larger than q1 and q2.
Generally speaking, we can’t solve Eq.(1) in this condition analytically except the
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case of β = 2. In this case, we can formulate as follows:

min
x,y

C = K
3

∑
i=1

qi
α li(x,y)

2

= K[q1
α(x2 + y2)+q2

α{(x−L)2 + y2}
+q3

α(x−L/2)2 +(y−
√

3L/2)2]. (4)

After solving the first derivative of this expression with respect to x and y, we can get the
optimal location as follows:

x∗ =
2q2

α +q3
α

q1α +q2α +q3α
L
2
, (5)

y∗ =
q3

α

q1α +q2α +q3α

√
3L
2

. (6)

When q1 is equal to q2, the x-coordinate of optimal point become x∗ = L/2 and optimal
point locate on the bisector of base.

We substitute L = 10000 for lentgh and q1 = q, q2 = q, q3 = 2q(q = 10000) for the
parameters of demands. We can plot the ordinate of optimal point on the bisector of base
in Fig.5. The optimal point gradually moves to the interior of the triangle as α become
smaller, if β is greater than one. This result is same as the case of one-dimensional region.
On the other hand, the optimal point suddenly moves to the interior of the triangle, if both
of α and β is less than one.

We calculate the contour lines of the objective function of Eq.(1) and find the optimal
point. From the comparison between (i) and (ii) in Fig.4, the optimal point moves to the
largest demant point C as beta become smaller. From the comparison between (i), (iii)
and (iv) in Fig.4, the optimal point moves to the center of gravity as α become smaller.

4 Case study of air cargo in East Asia
4.1 Demands and Parameters

We treat ten major airports in East Asia including Hong Kong, Incheon and Narita as
shown in Fig.6. We use the annual handling data of international air cargo[1] as demand
data qi. We define the Euclidean distance on the map of Mercator projection as distance
li(x,y).

We confirm the economies of scale in both distances and demands from the parameters
estimated by the actual rate of air cargo. JFFI[5] reported the matrix of rate which consists
of the weights and the distances in 2007. We also include data of United States because
many integrators of United States also operate in East Asia. We estimate parameters of α ,
β and K of Eq.(1) by the nonlinear regression using least squares method, and the results
are table1. As R-square coefficient of determination is very high, the regression almost
perfectly fits the data.

Both of the elasticity of demands α and the elasticity of distances β is less than one
in almost all countries, so we can conclude that there are economies of scale in demands
and distances. The results of α and β in China are very close to those in United States.
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Figure 4: Iso-cost curves in two-dimensional triangle region
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Figure 5: Optimal point in two-dimensional triangle region
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Table 1: Result of estimated parameters

Country K α β R2

Japan 1.726 0.894 0.750 0.997
United States 147.704 0.957 0.195 0.999
China 48.102 0.903 0.221 0.987
Korea 1.266 0.377 1.001 0.815
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Figure 6: Distribution of demand

4.2 Computational results
We calculate the contour lines of the objective function of Eq.(1) in Fig. 7 and find

the optimal point.
Weber point is located on the East China Sea and is very close to Shanghai in China.

Center of gravity is also located on the East China Sea, but is located more east than
Weber point.

Optimal point of Japan is absorbed solution on Shanghai airport. Optimal point of
Korea is the same as that of Japan. Optimal point of United States is absorbed solution
on Hong Kong airport which have the largest demand. Optimal point of China is same as
that of United States.

The iso-cost curves of Weber point and center of gravity are convex functions and
have only one global optimal solution because β is not less than one. On the contrary,
the iso-cost curves of every counties except Korea are not convex fuctions and have many
local optimal solutions because β is less than one. The iso-cost curves of United States
and China are very complex compared with those of Japan and Korea because β is close
to zero.
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Figure 7: Iso-cost curves in East Asia
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5 Conclusion
In this paper, we formulate the economies of scale using nonlinear cost function of

distances and demands, and analyze how the change of the transportation cost affects sin-
gle hub location of air cargo using the generalized Weber problem on the regular demand
points of one and two-dimensional region and the actual location of airport in East Asia.
The optimal location moves to the largest demand points as the economies of scale in dis-
tances become larger or the economies of scale in demands become smaller. We confirm
economies of scale in both distances and demands from the parameters estimated by the
actual transportation cost in East Asia and find the optimal hub location of air cargo.
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