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Abstract  Production processes in the chemical industry often consist of an initial stage in 
which a basic chemical product is produced and a subsequent stage which produces the final 
product variants according to demand forecasts or customer orders. Typically, a filling and 
packaging process is integrated into this final production stage. For scheduling the produc-
tion and packaging activities a mixed-integer linear programming (MILP) model is proposed 
which is based on the definition of setup families and the production of product variants in a 
pre-defined sequence. The model determines the size and the time phasing of the individual 
production lots. In contrast to conventional lot-sizing and scheduling models, the proposed 
optimization model is based on a continuous representation of time. 
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1 Introduction 
Considering the production of pharmaceuticals as an example, two major pro-

duction stages can be distinguished. In the initial stage a basic chemical product is 
produced through a number of time-consuming chemical processing steps while in 
the subsequent stage the basic chemical product is processed further and the final 
product variants are produced according to demand forecasts or customer orders. In 
the chemical and pharmaceutical industry, different variants of a product are 
achieved by adjusting the process parameters and the mix of input materials as well 
as using a variety of packaging formats according to the end users’ requirements 
and country-specific regulations.  

In this paper we focus on the final production and packaging stage of the entire 
chemical production process which often consists of a number of filling and pack-
aging lines. This combined production and packaging process typically constitutes 
the bottleneck in the final stage of the production system. Such production systems 
can be found in many branches of the process industries, e.g. in the chemical or 
consumer goods industries. 

Specifically in the chemical and pharmaceutical industry, parallel lines are es-
tablished for each package type, e.g. liquid and solid drugs. A line usually produces 
a number of product types and packages them into individual units for shipment to 
customer warehouses. Each product type corresponds to a specific recipe which de-
termines the ingredients and the processing conditions while product variants are 
defined by the specific packaging form. Typically, production lines are set up for a 
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specific product type requiring a major setup such that the changeover between the 
individual product variants can be accomplished with only a minor setup or clean-
ing operation. 

The intention of this paper is to develop an optimization model for short-term 
scheduling and lot sizing in single-stage chemical production. The model formula-
tion is based on the block planning concept proposed by Günther et al. (2006). The 
remainder of this article is organized as follows. In the next section the major char-
acteristics of the block planning concept are explained. In the subsequent Section 3, 
a block planning model based on mixed-integer linear programming is developed. 
Finally, conclusions are drawn and the practical applicability of the proposed mod-
elling approach is discussed. 

2 Block planning 
In short-term production planning, decisions have to be made on lot sizes and 

their timing and sequencing on the various manufacturing and packaging lines. In 
particular, in process-related industries there is often a natural sequence in which 
the various products are to be produced in order to minimize total changeover time 
and to maintain product quality standards. For example, setups are sequenced from 
products with high to low purity requirements or from the brighter color of a prod-
uct to the darker. Hence, families of products can be identified which are produced 
in a given sequence under the same basic equipment setup. In this case, major set-
ups are incurred for changing over between product families while only minor set-
ups are needed for switching to another product within the same family.  

Since conventional lot-sizing and scheduling models do not sufficiently reflect 
the conditions given in process industries we propose an alternate approach, called 
block planning, for scheduling production orders on a continuous time scale with 
demand elements being assigned to distinct delivery dates. Moreover, issues like 
definition of setup families with consideration of major and minor setup times and 
multiple non-identical production lines with dedicated product-line assignments are 
addressed in a realistic way. The model formulation aims at supporting operative 
decisions in a single-stage production system.  

So far, in the scientific literature the application of block planning concepts and 
the development of corresponding optimization models are widely neglected though 
block planning concepts are easy to implement and reflect managerial practice 
prevalent in make-and-pack production. Block planning approaches have been de-
veloped for specific applications, e.g. hair dye production (cf. Günther et al. 2006) 
or in fresh food industries (cf. Lütke Entrup et al. 2005). Recently, an integrated 
model for production and distribution planning in the fast moving consumer goods 
industry has been presented by Bilgen and Günther (2010).  

In the chemical industry application investigated here, specific combined filling 
and packaging lines are used for the various packaging types, e.g. liquid and solid 
forms of drugs. This makes it possible to subdivide the entire planning problem into 
line-specific sub-problems. Hence, in the following we consider only one single line. 
For the filling and packaging line at hand, the block pattern given in Fig. 1 illus-
trates the sequence of product types which are produced each after a major setup. 
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Once the line is set up this way, a family of different product variants is processed 
in the pre-defined sequence each with a production sub-lot of variable size. When 
changing over from one product variant to another, a minor setup time is incurred. 
Further blocks are appended in a cyclical fashion until the end of the planning hori-
zon is reached.  

 

 

Figure 1: Block pattern for a production line. 
 
The major characteristics of the basic block planning concept upon which the 

development of the MILP model in the next section is based can be summarized as 
follows.  
 Given the assignment of products to setup families, fixed setup sequences 

of products are defined based on human expertise and technological re-
quirements. Each block corresponds to a setup family and is scheduled in a 
cyclical fashion.  

 The composition of the individual blocks is not necessarily the same. Bi-
nary decision variables indicate whether a product is set up or not and con-
tinuous decision variables reflect the lot size of each product in the block. 
Depending on the development of demand over time, the lot sizes of an in-
dividual product may vary from block to block. As a result, also the time 
needed to complete a block is variable. 

 The start-off and completion dates of a block are not directly linked to the 
period boundaries. Hence, a block is allowed to start in an earlier period as 
soon as the predecessor block has been completed. However, the execution 
of a block must be finished before the end of the assigned period. 

 Typically, a major setup operation is performed before starting or after 
completing a block (e.g. for cleaning the manufacturing equipment), while 
only a minor setup operation is required when changing between products 
within the same block (e.g. for provision of material or for adjusting the 
processing conditions).  

 Macro-periods, e.g. weeks, are used for the assignment of blocks while the 
assignment of external demand elements is based on micro-periods, e.g. 
days. 

 For each product inventory balances are updated on a periodic basis ac-
cording to the production output and the given external demand. 

 The usual objective function is to minimize total inventory holding and 
setup costs. Major constraints arise from the available production capacities 
and the satisfaction of external demand. 
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3 Model formulation 
In this paper, a flexible block planning approach based on a mixed-integer linear 

programming (MILP) model is proposed which introduces a considerable degree of 
flexibility for determining the length of an entire block, varying the production 
quantities for individual products variants within a block, and for scheduling the 
start-off and completion times of all blocks and production lots. The MILP model 
formulation uses a continuous time representation to model the production runs for 
all products within a setup family while a discrete time representation is used for 
the assignment of blocks to macro-periods and for the daily assignment of demand 
elements. Binary decision variables refer to the setup of blocks, production lots for 
packaging forms, and sub-lots for product types. Continuous variables are used to 
model the lot sizes and sub-lot sizes, inventory levels and the timing of the various 
production activities. The objective function minimizes major setup costs for pro-
duction lots, minor set up costs for sub-lots, and inventory holding costs. The nota-
tion used in the model formulation is given as follows. 

Indices and sets 
i I  blocks 1i ,...,last( I )  

fixi I  fixed blocks ( 1 fixi ,...,last( I ) ) 
opti I  optional blocks ( opt opti first( I ),...,last( I ) ) 

p P  products 
p P( i )  products which are produced in block i 
p P( j )  products which belong to product family j 
j J  product families 

i it ,     periods with i and i  indicating the earliest start and latest 
feasible completion time, respectively, of block i 

Parameters 

pls  minimum sub-lot size of product p in the fixed block 

pM  maximum sub-lot size of product p 

pa  unit production time for product p 

ps  minor setup time per sub-lot of product p 

iS  major setup time for block i 

ptd  external demand of product p assigned to the end of period t 
min
pc  minor setup cost per sub-lot of product p 
maj
ic  major setup cost for block i 
inv
pc  inventory holding cost per unit of product p per period 

Decision variables and domains 
0ipx   sub-lot size of product p in block i 
 0 1ijy ,  =1, if product family j is assigned to optional block i 
 0 1ip ,   =1, if product p is set up in block i (0, otherwise) 
 0 1i ,   = 1, if optional block i is active, i.e. a product family is as-

signed to it (0, otherwise) 
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 0 1itz ,
 

=1, if block i has been finished up to the end of period t  
(0, otherwise) 

0ptq   output of product p available at the end of period t 
0ptF   inventory level of product p at the end of period t 

0i   start time of block i 
0i   end time of block i 
0i   duration of block i 

 
The following MILP model formulation is based on the distinction of fixed and 

optional blocks and does not rely on a strict block to period assignment. Since each 
product family must be scheduled at least once in the course of the planning horizon 
– given that a positive net-requirement for at least one item within the product fami-
ly exists – we consider the setup of one block of each product family as being fixed, 
but still leave the start-off time of the block open. Further setups of a product family 
are considered optional because the number and the size of the respective blocks as 
well as their timing have to be determined by the optimization model. In order to 
obtain the sequence of the fixed blocks, the corresponding product families are 
sorted in ascending order of their run-out-times. The second part of the production 
schedule contains the optional blocks. As a flexible and practice-oriented approach 
we propose that a “menu” of optional blocks is defined by the human planner leav-
ing open the assignment of product families to blocks and the sub-lot sizes of the 
individual products. Since not all of the allowed optional blocks must be utilized, 
active and non-active blocks can be distinguished. The constraints of the block 
planning model are the following. 

Setup constraints for fixed blocks: Product families whose stocks deplete during 
the planning horizon require at least one setup, i.e. the value of the corresponding 
binary setup variable is set to one in constraint (1) and, according to constraint (2), 
the sub-lot sizes of all products belonging to the product family must meet the 
minimum lot size necessary to cover demand over the pre-determined run-out time 
of the initial stock.  

1ip   0fix
pi I , p P( i ) ls     (1) 

ip px ls  0fix
pi I , p P( i ) ls     (2) 

Setup constraints for optional blocks: According to (3) block i can only be ac-
tive, if its predecessor block i-1 is active. In other words, non-active blocks are as-
signed to the end of the schedule. Constraint (4) ensures that exactly one product 
family is assigned to an optional block, if the block is active, and no product family 
is assigned, if the block is not active. According to (5) binary setup variables for the 
production sub-lots are allowed to take values of one only if the respective product 
family j is assigned to the block. Constraint (6) models the relationship between the 
size of the sub-lot  and the binary setup variable. The size of the sub-lot is enforced 
to zero if no corresponding setup operation is performed. 

1i i    opti I    with  1fixlast( I )
   (3) 
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ij i
j J

y 


  opti I   (4) 

ip ij
p P( j )

y P( j )


   opti I , j J    (5) 

ip p ipx M    opti I   (6) 

Block schedule: Constraint (7) models the duration of a block which results from 
the major setup time for the block, the minor setup times for all sub-lots and the 
time required for producing the sub-lot sizes. According to (8) a block is allowed to 
start as soon as the predecessor block has been completed. Constraints (9) and (10) 
impose time windows for the earliest start-off and for the latest completion time of 
a block. Constraint (11) defines the end time of block i. 

 i p ip p ip i i
p P

s a x S  


      i I   (7) 

1 1i i i      12 with 0i ,...,last( I )     (8) 

ii   i I   (9) 

i i i     i I   (10) 

i i i     i I   (11) 

Matching production output and demand: Since the assignment of product fami-
lies to blocks is not given in advance, additional decision variables and constraints 
are introduced in order to trace the completion of production activities over time 
and to match the resulting production output against external demand. While a con-
tinuous time representation is used to schedule the production runs for all products 
within a product family, demand elements are assigned to the end of a period. So-
called heavy-side variables (cf. Grunow et al., 2003) are introduced which indicate 
if block i has been finished up to a particular period t. The following logical con-
straints (12) and (13) enforce the heaviside variables to zero for all periods prior to 
the completion period of the block and to one for the completion period and all suc-
ceeding periods. For all periods t prior to the completion period of block i, the right-
hand side in (12) is greater than zero and less than one and in (13) less than zero. 
Hence the binary heaviside variables are enforced to zero. For the remaining peri-
ods the right-hand side in (12) is greater than one and in (13) between zero and one. 
As a result, the heaviside variables are enforced to one. This way the completion of 
a production sub-lot is indicated by a switch from zero to one in the periodic devel-
opment of the heaviside variables. 

1 i
it

i

t
z




   i ii I ,t ,...,     (12) 

i
it

i

t
z




  i ii I ,t ,...,     (13) 

The following constraints are needed to derive the quantities of final products 
from the various optional blocks depending on the assigned product family. Accord-
ing to (14) and (15) only at the period, in which the values of the heaviside va-
riables switch from zero to one, output from the production process is available. For 
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all other periods the respective variables takes a value of zero. Constraint (16) 
makes sure that the daily output quantities match the production sub-lot size. Con-
straint (17) contains the inventory balances. 

pt p itq M z   ii I , p P,t      (14) 

 1pt p it i ,tq M z z    1i ii I , p P,t ,...,       (15) 

i

pt ip
t i

q x



  i ii I , p P,t ,...,      (16) 

1pt p,t pt ptF F q d   p P,t T     with  p0F given  (17) 

Objective function: The entire optimization model consists of constraints (1) to 
(17) and the objective function (18) stated below. The objective function aims to 
minimize total costs comprised of major and minor setup costs and inventory hold-
ing costs.  

min maj min inv
i p ip p pti

opt i I p P p P t Ti I

c c c F 
   

          (18) 

4 Conclusions 
In this paper an MILP-based block planning approach for production scheduling 

in single-stage production systems has been presented. The size of the MILP model 
depends on the number of product families and specific product variants, the den-
sity of the time grid which is imposed for the assignment of demand elements, and 
on the number of blocks in the schedule. Despite its general applicability, a key fac-
tor which has a considerable impact on the computational effort is the introduction 
of daily time periods and the use of heaviside variables which are needed to trace 
the completion date of the production lots. Especially, when a large number of 
small-sized demand elements have to be considered, the computational complexity 
of the model solution is accordingly increased and CPU times rise significantly. 
Nevertheless, initial numerical tests showed that optimal solutions can be obtained 
within a few minutes of CPU time. 

In any case, the framework of mixed-integer linear programming provides con-
siderable flexibility for the integration of application-specific features which is not 
given for conventional lot sizing and scheduling models known from the academic 
literature. Combined with the human planner’s expertise on the definition of setup 
families and the natural sequence in which the various products are to be produced 
in order to minimize total changeover time and to prevent quality losses, block 
planning represents a practical and efficient way to support decision makers in prac-
tice. 
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