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1 Introduction
Many practical problems can be described adequately only with the aid of nonsmooth

functions and Minkowski duality plays a very important role in nonsmooth analysis and
optimization. Take example for convex functions, due to Minkowski duality convex com-
pact subsets corresponding to directional derivatives (which is sublinear) are the subdif-
ferential.

However, if the directional derivative of a nonsmooth function is neither sublinear nor
superlinear, then classical Minkowski duality can’t be used to establish a relationship be-
tween directional derivative and generalized differential. For this, Demyanov introduced
a difference of convex compact subsets, which is called Demyanov difference later and
is helpful to extend the classical Minkowski duality to a wider class of functions, see for
example [1], [2]. Whereafter, many articles on Demyanov difference appeared, which can
be mainly divided into two classes,

1. The operational property of Demyanov difference, see for example [1, 2, 6, 7];
2. The application in optimality conditions for quasidifferentiable optimization, see

for example [3, 4].

Because the definition of the Demyanov difference is complicated, in practice, it can
only be computed for a few examples which affects its usefulness in algorithm. In [3],
the computation of Demyanov difference for polyhedron is done by some linear pro-
gramming. In this paper, under the assumption of polyhedron convex compact sets, the
Demyanov difference is also computed by some linear programmings which is the same
as [3] in quantity. But the construction of every linear programming is different to the one
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in [3]. The method can be realized in numerically by C procedure or other ones. In this
paper, the examples are presented and the corresponding results are given by C procedure
which is more adaptive than the one in [3] for some cases.

2 Numerical computation for Demyanov difference
Firstly, concept of the Demyanov difference is recalled, which can be found in [2,6,7].

Definition 2.1.
Let U,V ⊂ Rn be convex compact, PU (d) = maxu∈U ⟨u,d⟩, PV (d) = maxv∈V ⟨v,d⟩, TU,V is
a set of full measure with respect to Rn in which the functions PU (d) and PV (d) are also
differentiable, the Demyanov difference of U and V is defined by

U−̇V = clco{∇PU (d)−∇PV (d) ∣d ∈ TU,V}.
Remark 2.1.
The Demyanov difference is consistent for the different choice of TU,V , so the above defi-
nition is reasonable.

In order to compute U−̇V , it is necessary to know what is TU,V and how to compute
∇PU (d) and ∇PV (d) in Definition 2.1. By convex analysis [5], one has the function PU (d)
is subdifferentiable and for any d ∈ Rn,

∂PU (d) = {u ∈U ∣ ⟨u,d⟩= PU (d)} (2.1)

Specially, if ∂PU (d)= {∇PU (d)} is singleton, then P is differentiable at d, i.e., ∇PU (d)
exists. It can be known that PU (d) is differentiable a.e. by convex analysis [5], so the set
{d ∈ Rn ∣∇PU (d)exsists} is of full measure with respect to Rn. Then, it is easy to see that
the set {d ∈ Rn ∣∇PU (d)and∇PV (d)exsists} is also of full measure with respect to Rn. By
Remark 2.1, TU,V can be understood by the following way,

TU,V = {d ∈ Rn ∣∇PU (d)and∇PV (d)exsists}.

Now, we consider how to compute the sets ∇PU (d) and ∇PV (d). To be more intuitive,
assume U and V are polyhedron. We first discuss ∇PU (d) for the polyhedron U in the
following Figure 1.

1. If ∇PU (d) exists for some d, ∇PU (d) must be some vertex of the polyhedron U by
(2.1).

2. If u1 is the gradient at some d, then u1 is the only point in the set {u ∈ Rn ∣ ⟨u,d⟩=
PU (d)}. It intuitively equal to d ∈ Rn∖{0n} and the following inequalities hold:

(ui −u1)
T d < 0, i = 2,3,4,5

That is to say for all d ∈ Rn satisfying (ui −u1)
T d < 0, i = 2,3,4,5, in the figure 1

, ∇PU (d) = u1 holds.

By the above analysis, if V = co{v1,v2,v3,v4}, then u1 − v1 can be expressed by
∇PU (d)−∇PV (d) for some d ∈ TU,V iff the following inequalities for d has at least one
nonzero solution:

(
(ui −u1)

T

(v j − v1)
T

)
d < 0, i = 2,3,4,5, j = 2,3,4 (2.2)

98 The 8th International Symposium on Operations Research and Its Applications



Figure 1: ∇PU (d) for the polyhedron U

Naturally, the following results is reasonable,

Lemma 2.1.
Suppose I = {1, ⋅ ⋅ ⋅ , p}, J = {1, ⋅ ⋅ ⋅ ,q}, U = co{ui ∣ i ∈ I}, V = co{v j ∣ j ∈ J}, then

U−̇V = co

{
us − vt

∣∣∣∣∣∃d ∈ Rn :

(
(ui −us)

T

(v j − vt)
T

)
d < 0, i ∈ I∖{s}, j ∈ J∖{t}

}

(2.3)

The proof of the above result can be referred to Y. Gao in [3].
By far, the computation of Demyanov difference has been changed to the computation

of the inequalities. To solve the above inequalities, the following work is done.

Lemma 2.2.
Inequalities for d, Ad < 0, have no nonzero solution iff 0n ∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}, where
A = (aT

1 , ⋅ ⋅ ⋅ ,aT
m)

T , ai ∈ Rn, d ∈ Rn.

Proof Inequalities for d, Ad < 0, means {d ∣aT
i d < 0, i = 1, ⋅ ⋅ ⋅ ,m}. Firstly, con-

sider the necessaries. Assume by contradiction 0n ∕∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}, for co{ai ∣ i =
1, ⋅ ⋅ ⋅ ,m} is a polyhedron, there exists a nonzero vector d ∈ Rn such that max{⟨ai,d⟩ ∣ i =
1, ⋅ ⋅ ⋅ ,m} < 0 by seperated theorem [5]. That is to say the nonzero vector d satisfies
Ad < 0, which is a contradition. Thus 0n ∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}.

Sufficiency. Assume by contadiction that there exists a nonzero vector d ∈ Rn such
that aT

i d < 0, i = 1, ⋅ ⋅ ⋅ ,m. Since 0n ∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}, there exists a set of nonzero
numbers ri ≥ 0, i = 1, ⋅ ⋅ ⋅ ,m, ∑m

i=1 ri = 1, such that 0n = ∑m
i=1 riai by the definition of

convex hull. So

0 = 0T
n d = (

m

∑
i=1

riai)
T d =

m

∑
i=1

(riaT
i )d =

m

∑
i=1

riaT
i d < 0,
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which is impossible. Therefore Ad < 0 have no nonzero solution. □

By Lemma 2.2, in order to tell whether the inequalities for d, Ad < 0, have a nonzero
solution, it is sufficient to consider whether the set co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m} contains 0n. The
following transfer will be done which makes it executive to tell whether 0n ∕∈ co{ai ∣ i =
1, ⋅ ⋅ ⋅ ,m}.

Theorem 2.1.
Let ai ∈ Rn, i = 1, ⋅ ⋅ ⋅ ,m. Then 0n ∕∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m} iff the optimal value of the fol-
lowing linear programming is 0,

min −∑m
i=1 ri

s.t. ∑m
i=1 riai = 0n,

0 ≤ ri ≤ 1, i = 1, ⋅ ⋅ ⋅ ,m
(2.4)

Proof Necessity. Since 0n ∕∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}, the set of number ri ≥ 0, i =
1, ⋅ ⋅ ⋅ ,m, such that ∑m

i=1 riai = 0n, are only zeroes. That is to say the feasible region of the
linear programming (2.4) contains 0n only. So the optimal value of the problem (2.4) is 0.

Sufficiency. By the fact that the optimal value of the problem (2.4) is zero, it can be
deduced that the scalars satisfying ∑m

i=1 riai = 0n, 0 ≤ ri ≤ 1, is the only 0n. From the
definition of the convex hull, 0n ∕∈ co{ai ∣ i = 1, ⋅ ⋅ ⋅ ,m}. □

Theorem 2.2.
Let U = co{ui ∣ i = 1, ⋅ ⋅ ⋅ , p} ⊆ Rn, V = co{v j ∣ j = 1, ⋅ ⋅ ⋅ ,q} ⊆ Rn, s ∈ I := {1, ⋅ ⋅ ⋅ , p},
t ∈ J := {1, ⋅ ⋅ ⋅ ,q}. Then us−vt ∈U−̇V iff 0 is the optimal value of the following problem

min −∑i∈(I∪J)∖{s,t} ri

s.t. ∑i∈I∖{s} ri(ui −us) = 0n,

∑ j∈J∖{t} r j(v j − vt) = 0n,

0 ≤ ri ≤ 1, i ∈ (I ∪ J)∖{s, t}

(2.5)

Proof By Lemma 2.1, us − vt ∈U−̇V iff the inequalities for d
(

(ui −us)
T

(v j − vt)
T

)
d < 0, i ∈ I∖{s}, j ∈ J∖{t} (2.6)

has at least one nonzero solution. By Lemma 2.2, that is to say

0n ∕∈ co{ui −us,v j − vt ∣ i ∈ I∖{s}, j ∈ J∖{t}}.

Applying Theorem 2.1, one has the optimal value for linear programming (2.5) is 0,
which completes the proof of the theorem. □

In [3], the Demyanov difference of polyhedral convex sets is determined by finitely
number of linear programming problems which are constructed by Gorden Theorem. In
the construction, every linear programming problem is n+ I + J − 2 dimensional, and
the constraints are composed of n+ 1 equality ones, where n is the dimension of poly-
hedral convex sets, I and J are the numeral of vertex of the two polyhedral convex sets
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in Demyanov difference, respectively. In this paper, the computation of the Demyanov
difference is also determined by finitely number of linear programming problems, and
the number of linear programming problems is the same to Gao in [3]. However, the con-
struction of every linear programming problem is different from Gao in [3], the dimension
of the variable is I+J−2, and the number of the equality constraints is I+J−2, in which
n, I and J are of the same meaning to above. Obviously, the dimensional is decreased with
respect to [3], and the number of the constraints is neither better nor worse than [3], which
will be different to different problems. And if the dimension of the polyhedral convex sets
is relative large and the vertex of the polyhedron is not big, the method in this paper will
be more adaptive than [3].

3 Algorithm and Numerical Results
Basing on the results in Section 2, the executive algorithm for Demyanov difference

of two convex compact sets can be given as follows under the assumption that the convex
compact sets are polyhedron.

Algorithm 3.1.
(Compute U−̇V , where U = co{Ui ∣ i = 1, ⋅ ⋅ ⋅ , p}, and V = co{Vj ∣ j = 1, ⋅ ⋅ ⋅ ,q})

Step0 Initiation Ui, V j, i := 1, j := 1.
Setp1 Compute ai j =Ui −Vj, construct the following programming

min −∑m
k=1 rk

s.t. ∑m
k=1 rkai j = 0n,

0 ≤ rk ≤ 1, k = 1, ⋅ ⋅ ⋅ ,m
(3.7)

If the optimal value of (3.7) is 0, output ai j. Otherwise go to Step 2.
Step2 If j < q, set j = j+1, go to Step 1. Otherwise go to Step 3.
Step3 If i < p, set i = i+1, go to Step 1. Otherwise Stop.

What follows, we shall choose some polyhedron randomly and give the numerical
results basing on the algorithm given above which is written by C procedure.
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