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Abstract Let f : Zn → Rn be a mapping satisfying the direction preserving property that fi(x)> 0
implies fi(y) ≥ 0 for any integer points x and y with ∥x− y∥∞ ≤ 1. We assume that there is an
integer point x0 with c ≤ x0 ≤ d satisfying that

max
1≤i≤n

(xi − x0
i ) fi(x)> 0

for any integer point x with f (x) ∕= 0 on the boundary of H = {x ∈ Rn ∣ c− e ≤ x ≤ d + e}, where
c and d are two finite integer points with c ≤ d and e = (1,1, ⋅ ⋅ ⋅ ,1)⊤ ∈ Rn. This assumption is
implied by one of two different conditions for the existence of an integer zero point of the mapping
in van der Laan et al. (2004). Under the assumption, there is an integer point x∗ ∈ H such that
f (x∗) = 0. A constructive proof of the existence is derived from an application of the well-known
(n+1)-ray algorithm for computing a fixed point. The existence result has applications in general
equilibrium models with indivisible commodities.
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1 Introduction
The problem we consider in this paper is the existence of an integer zero point of a

mapping f : Zn → Rn. The interests in integer zero points or fixed points of a mapping
have been inspired by the work in Iimura (2003) though the statement of the existence of
a discrete fixed point in Iimura (2003) is incorrect and a corrected statement was given
in Iimura et al. (2004) after an application of the integrally convex set defined in Favati
and Tardella (1990). A brief introduction to the applications of discrete fixed points of a
mapping in economics can be found in Iimura (2003) and references therein.

Let f : Zn → Rn be a mapping. Following the definition in Iimura (2003), we say
that f (x) satisfies the direction preserving property if fi(x) > 0 implies fi(y) ≥ 0 for
any integer points x and y with ∥x− y∥∞ ≤ 1. We assume throughout this paper that f (x)
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satisfies the direction preserving property. Recently, under two different conditions, based
on the 2n-ray algorithm in van der Laan and Talman (1981), a constructive proof of the
existence of an integer zero point of a mapping with the direction preserving property
has been obtained in van der Laan et al. (2004). Those two conditions can be stated as
follows.

Condition 1.
There exist integer vectors m, x0, and M with m+e< x0 <M−e such that, for any integer
point x on the boundary of C = {y ∈ Rn ∣ m ≤ y ≤ M},

(x− x0)⊤ f (x)> 0.

Condition 2.
There exists an integer vector u with u > e such that, for any two cell connected integer
points x and y on the boundary of U = {z ∈ Rn ∣ −u ≤ z ≤ u},

fk(x) fk(−y)≤ 0, k = 1,2, ⋅ ⋅ ⋅ ,n.

Given these two conditions, the following two theorems can be found in van der Laan
et al. (2004).

Theorem 1.
If Condition 1 holds, there exists an integer point x∗ ∈C such that f (x∗) = 0.

Theorem 2.
If Condition 2 holds, there exists an integer point x∗ ∈U such that f (x∗) = 0.

We introduce in this paper a new condition for the existence of an integer zero point
of the mapping, which is as follows.

Condition 3.
There is an integer point x0 with c ≤ x0 ≤ d satisfying that

max
1≤i≤n

(xi − x0
i ) fi(x)> 0

for any integer point x with f (x) ∕= 0 on the boundary of H = {x ∈ Rn ∣ c−e ≤ x ≤ d+e},
where c and d are two finite integer points with c ≤ d.

Lemma 1.
Condition 1 implies Condition 3. However, Condition 3 implies neither Condition 1 nor
Condition 2.

Proof. From Condition 1, we obtain that, for any integer point x on the boundary of
C,

(x− x0)⊤ f (x)> 0,

which implies that (xi−x0
i ) fi(x)> 0 for at least one of i= 1,2, ⋅ ⋅ ⋅ ,n. Thus, max1≤i≤n(xi−

x0
i ) fi(x) > 0 for any integer point x on the boundary of C. Let H = C, c = m+ e, and

d = M− e. Condition 3 follows. We remark that H in Condition 3 can be smaller than C
in Condition 1.

Given Condition 3, we obtain the following theorem in this paper.
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Theorem 3.
If Condition 3 holds, there exists an integer point x∗ ∈ H such that f (x∗) = 0.

In this paper, we present a new constructive proof of Theorem 3, which is derived from
the well-known (n+ 1)-ray algorithm in van der Laan and Talman (1979). The (n+ 1)-
ray algorithm is one of simplicial methods for computing a fixed point of a mapping. The
simplical methods were originated by Scarf in Scarf (1967), and have been substantially
developed after Scarf’s work (e.g., Allgower and Georg, 2000; Dang, 1991, 1995; Dang
and Maaren, 1998; Eaves, 1972; Eaves and Saigal, 1972; Forster, 1995; Kojima and
Yamamoto, 1982; Kuhn, 1968; van der laan and Talman, 1979, 1981; Merrill, 1972;
Scarf, 1973, 1981; Todd, 1976; Yamamoto, 1983; etc.). The basic idea of the constructive
proof is as follows. It assigns to each integer point of H an integer label and subdivides
H into integer simplices. Starting at x0, the constructive proof follows a finite simplicial
path that leads to an integer zero point of the mapping.

The rest of this paper is organized as follows. An integer labeling rule is introduced
in Section 2. The constructive proof is given in Section 3.

2 Integer Labeling
Let N = {1,2, ⋅ ⋅ ⋅ ,n} and N0 = {1,2, ⋅ ⋅ ⋅ ,n+ 1}. Let ui be the ith unit vector of Rn

and hi =−ui for i = 1,2, ⋅ ⋅ ⋅ ,n. Let e = (1,1, ⋅ ⋅ ⋅ ,1)⊤ ∈ Rn and hn+1 = e. For any subset
K of N0 with K ∕= N0, let

G(x0,K) = {x0 + ∑
k∈K

λkhk ∣ 0 ≤ λk, k ∈ K}.

To obtain a constructive proof of Theorem 3, we need a triangulation of H that subdivides
every integer unit cube contained in H into integer simplices, and G(x0,K) into integer
simplices for any subset K ⊂ N0. Here, an integer unit cube is a unit cube having only
integer vertices and an integer simplex is a simplex having only integer vertices. There
are several triangulations suitable for this purpose, which include the K1-triangulation
in Freudenthal (1942), the J1-triangulation in Todd (1976), a modification of the D1-
triangulation in Dang (1991), etc. A specific choice of the triangulation plays however
no dominant role at all in this paper though efficiency of simplicial methods depends
critically on the underlying triangulation. For simplicity, we choose the K1-triangulation
as an underlying triangulation of the (n+1)-ray algorithm for our constrictive proof. For
completeness of the following discussions, we introduce the K1-triangulation here.

A simplex of the K1-triangulation of Rn is the convex hull of n+ 1 integer vectors,
y0, y1, . . . , yn, given by y0 = y and yk = yk−1 +uπ(k), k = 1,2, . . . ,n, where y is an integer
point of Rn and π = (π(1),π(2), . . . ,π(n)) a permutation of elements of N = {1,2, . . . ,n}.
Let K1 be the set of all such simplices. Since a simplex of the K1-triangulation is uniquely
determined by y and π , we use K1(y,π) to denote it.

We say that two simplices of K1 are adjacent if they have a common facet. We show
how to generate all the adjacent simplices of a simplex of the K1-triangulation of Rn in
the following. For a given simplex σ = K1(y,π) with vertices y0, y1, . . . , yn, its adjacent
simplex opposite to a vertex, say yi, is given by K1(ȳ, π̄), where ȳ and π̄ are generated in
the following table.
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Table 1: Pivot Rules of the K1-Triangulation
i ȳ π̄
0 y+uπ(1) (π(2), . . . ,π(n),π(1))
1 ≤ i < n y (π(1), . . . ,π(i+1),π(i), . . . ,π(n))
n y−uπ(n) (π(n),π(1), . . . ,π(n−1))

Let K1 be the set of faces of simplices of K1. A q-dimensional simplex of K1 with
vertices y0, y1, . . . , yq is denoted by < y0,y1, . . . ,yq >. The restriction of K1 on G(x0,K)
for any subset K ⊂ N0 is given by

K1∣G(x0,K) = {σ ∈ K1 ∣ σ ⊂ G(x0,K) and dim(σ) = ∣K∣},

where ∣ ⋅ ∣ denotes the cardinality of a set and dim(⋅) the dimension of a set. Obviously,
K1∣G(x0,K) is a triangulation of G(x0,K).

For σ ∈ K1, let grid(σ) = max{∥x− y∥∞ ∣ x ∈ σ and y ∈ σ}. We define mesh(K1) =
maxσ∈K1 grid(σ). Clearly, grid(σ) = 1 for any σ ∈ K1 and mesh(K1) = 1.

In our constructive proof, we need an integer labeling rule that assigns an integer
label to each integer point of H. Such an integer labeling rule is given in the following
definition.

Definition 1.
For x ∈ Zn, we assign to x an integer label l(x) given by l(x) = 0 if f (x) = 0, and

l(x) =

⎧
⎨
⎩

min{k ∣ fk(x) = max j∈N f j(x)} if f j(x)> 0 for some j ∈ N,

n+1 if f (x)≤ 0 and f (x) ∕= 0.

Definition 2.

• A q-dimensional simplex σ =< y0,y1, . . . ,yq > of K1 is complete if l(yi) ∕= l(y j)
for 0 ≤ i < j ≤ q, and l(yk) ∕= 0, k = 0,1, . . . ,q.

• A q-dimensional simplex σ =< y0,y1, . . . ,yq > of K1 is 0-complete if l(yi) ∕= l(y j)
for 0 ≤ i < j ≤ q, and there is some k satisfying that l(yk) = 0.

• A q-dimensional simplex σ =< y0,y1, . . . ,yq > of K1 is almost complete if labels
of q+1 vertices of σ consist of q different nonzero integers.

As a direct result of Definition 2, we have

Lemma 2.
Every almost complete simplex has exactly two complete facets.

Let ∂H denote the boundary of H. Then, according to the assumption, for any integer
point x ∈ ∂H with f (x) ∕= 0,

max
1≤i≤n

(xi − x0
i ) fi(x)> 0.
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Lemma 3.
For any nonempty subset K ⊂ N0, there is no complete simplex in G(x0,K)∩∂H carrying
only integer labels in K.

Proof. Suppose that there is a complete simplex in G(x0,K)∩∂H carrying only inte-
ger labels in K. Let σ =< y1,y2, ⋅ ⋅ ⋅ ,y∣K∣ > be such a complete simplex.

Consider n+ 1 /∈ K. Without loss of generality, we assume that K = {1,2, ⋅ ⋅ ⋅ , ∣K∣}
and l(yi) = i, i = 1,2, ⋅ ⋅ ⋅ , ∣K∣. Since f (x) satisfies the direction preserving property and
grid(σ) = 1, hence, for any i ∈ K, f j(yi) ≥ 0, j = 1,2, ⋅ ⋅ ⋅ , ∣K∣. From the definition of
G(x0,K) and n+ 1 /∈ K, we obtain that, for any x ∈ G(x0,K), xi − x0

i ≤ 0, i ∈ K, and
xi − x0

i = 0, i /∈ K. Thus, for any i ∈ K,

(yi
j − x0

j) f j(yi)≤ 0, j = 1,2, ⋅ ⋅ ⋅ ,n.

Therefore, for any i ∈ K,
max

1≤ j≤n
(yi

j − x0
j) f j(yi)≤ 0.

For any i ∈ K, since yi ∈ ∂H and f (yi) ∕= 0, hence,

max
1≤ j≤n

(yi
j − x0

j) f j(yi)> 0.

A contradiction occurs. The lemma follows.
Consider n+ 1 ∈ K. Without loss of generality, we assume that K = {1,2, ⋅ ⋅ ⋅ , ∣K∣−

1,n+ 1} and l(yi) = i, i = 1,2, ⋅ ⋅ ⋅ , ∣K∣− 1, and l(y∣K∣) = n+ 1. Since f (x) satisfies the
direction preserving property and grid(σ) = 1, hence, for any i ∈ K, f j(yi) ≥ 0, j =
1,2, ⋅ ⋅ ⋅ , ∣K∣ − 1. From l(y∣K∣) = n+ 1, we obtain that f (y∣K∣) ≤ 0. Thus, f j(y∣K∣) = 0,
j = 1,2, ⋅ ⋅ ⋅ , ∣K∣− 1. Since y∣K∣ ∈ G(x0,K), hence, y∣K∣

j − x0
j ≥ 0, j = ∣K∣, ∣K∣+ 1, ⋅ ⋅ ⋅ ,n.

Therefore,
max

1≤ j≤n
(y∣K∣

j − x0
j) f j(y∣K∣)≤ 0.

Since y∣K∣ ∈ ∂H and f (y∣K∣) ∕= 0, hence,

max
1≤ j≤n

(y∣K∣− x0
j) f j(y∣K∣)> 0.

A contradiction occurs. The lemma follows.
As a result of the direction preserving property and mesh(K1) = 1, we have

Lemma 4.
There is no complete n-dimensional simplex.

Proof. Suppose that there is a complete n-dimensional simplex. Let σ =< y0,y1, ⋅ ⋅ ⋅ ,yn >
be such a complete simplex. Without loss of generality, we assume l(yi)= i, i= 1,2, ⋅ ⋅ ⋅ ,n,
and l(y0) = n+1. Since f (x) satisfies the direction preserving property and grid(σ) = 1,
hence, f (y0)≥ 0. From l(y0) = n+1, we obtain that f (y0)≤ 0 and f (y0) ∕= 0. A contra-
diction occurs. The lemma follows.
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3 A Constructive Proof of the Existence
In this section, based on the well-known (n+1)-ray algorithm in van der Laan and

Talman (1979), the integer labeling rule given in Definition 1, and the results in Lemma 3
and Lemma 4, a constructive proof of Theorem 3 is obtained, which is as follows:

Initialization: Let K = /0, y0 = x0, σ0 =< y0 >, y+ = y0, and k = 0. Go to Step 1.
Step 1: Compute l(y+). If l(y+) = 0, the algorithm terminates and an integer zero point

of f (x) in H has been found. If l(y+) ∈ K, let y− be the vertex of σk other than y+

and carrying integer label l(y+), and τk+1 the facet of σk opposite to y−, and go to
Step 2. If l(y+) /∈ K, go to Step 3.

Step 2: If τk+1 ⊂ G(η ,K∖{ j}) for some j ∈ K, let K = K∖{ j} and go to Step 4. Other-
wise, do as follows: Let σk+1 be the unique simplex that is adjacent to σk and has
τk+1 as a facet, y+ the vertex of σk+1 opposite to τk+1, and k = k+1. Go to Step 1.

Step 3: Let K = K ∪{l(y+)} and τk+1 = σk. Let σk+1 be the unique ∣K∣-dimensional
simplex in G(η ,K) having τk+1 as a facet, and y+ the vertex of σk+1 opposite to
τk+1. Let k = k+1 and go to Step 1.

Step 4: Let σk+1 = τk+1, y− be the vertex of σk+1 carrying integer label j, and τk+2 the
facet of σk+1 opposite to y−. Let k = k+1 and go to Step 2.

Theorem 4.
If Condition 3 holds, the algorithm will terminate within a finite number of iterations at
an integer point x∗ ∈ H such that f (x∗) = 0.

Proof. Lemma 3 implies that all the simplices generated by the algorithm are con-
tained in H. Applying Lemma 2 and following an standard argument in Todd (1976), one
can derive that the algorithm will never cycle. Since H is bounded, hence, there is a finite
number of simplices in H and the algorithm will terminate within a finite number of iter-
ations. From Lemma 4, we know that there is no complete n-dimensional simplex in H.
This result implies that the algorithm will terminate at an integer point x∗ ∈ H such that
f (x∗) = 0. The theorem follows.
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