
Approximating Bounded Degree Maximum
Spanning Subgraphs∗

Wangsen Feng1,† Hao Ma1 Bei Zhang1

Hanpin Wang2

1Key Laboratory of Network and Software Security Assurance, Ministry of Education
Computing Center, Peking University, Beijing 100871, P.R. China

2School of EECS, Peking University, Beijing 100871, P.R. China

Abstract The bounded degree maximum spanning subgraph problem arising from wireless mesh
networks is studied here. Given a connected graph G and a positive integer d ≥ 2, the problem aims
to find a maximum spanning subgraph H of G with the constraint: for every vertex v of G, the degree
of v in H, dH(v), is less than or equal to d. Here, a spanning subgraph is a connected subgraph
which contains all the vertices of the original graph. We propose polynomial time approximation
algorithms for cardinality case and edge weighted case respectively. When input graphs are edge
unweighted, a 2-approximation algorithm is designed. When input graphs are edge weighted, the
designed algorithm always outputs a spanning subgraph whose maximum degree is no more than
d+1 and weight is at least OPT (G)

d+2 , where OPT (G) is the weight of optimal solutions. The bounded
degree spanning subgraph output by the algorithm can be used as a transport subnetwork in wireless
mesh networks.

1 Introduction
The problems of finding a maximum (minimum) subgraph satisfying certain con-

straints, such as the maximum matching problem, the maximum b-matching problem
and the bounded degree minimum spanning tree problem, are intensively studied in com-
binatorial optimization and graph theory.

In this paper, we will discuss a novel computational problem arising from wireless
mesh networks. The problem is named “Bounded degree maximum spanning subgraph
problem" and defined as follows:

Bounded degree maximum spanning subgraph problem: Given a connected graph
G and a fixed integer d ≥ 2, ask for a maximum spanning subgraph H of G with ∆(H) no
more than d, where a spanning subgraph is a connected subgraph which contains all the
vertices of G.

If d is restricted to be 2, the problem is equivalent to the problem of finding a Hamilton
path(cycle) in G. Thus, the problem is NP-Hard and we will focus on approximation
algorithms for it.

∗Supported by the Fundamental Research Program of China 973 under Grant No. 2009CB320505.
†Corresponding to fengws@pku.edu.cn

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 83–89



Let OPT (G), ALG(G) denote the number of edges in optimal solutions and solutions
output by our algorithms respectively.

1.1 Motivation
Wireless mesh network is a network implemented over a wireless LAN, and its in-

frastructure type is decentralized, relatively inexpensive, reliable and resilient since the
wireless routers are often static and not powered by batteries. In addition, the access
points (routers) seldom change their positions in wireless mesh networks and some wire-
less nodes have gateway functions to provide the connectivity to Internet. Therefore,
such networks behave almost like wired networks with infrequent topology changes and
limited node failures. Due to these good properties and potential applications such as
providing commercial Internet access to residents and local business, wireless mesh net-
works have drawn a lot of attention in recent years. For example, wireless mesh networks
are being used as the last mile for extending the Internet connectivity for mobile nodes.
In addition, some commercial deployments of multi-hop wireless meshes are already in
the works.

Unlike traditional wired networks, close-by mesh routers share certain wireless chan-
nel to communicate and the throughput of the whole network is severely limited by wire-
less interference. The capacity of wireless mesh networks will be increased tremendously
when extending from a single channel model to a multi-radio, multi-channel model. Usu-
ally, people design effective channel assignment, link scheduling, routing and transport
subnetwork selection algorithms to reduce wireless interference [1, 2, 3, 4].

Let us consider the following special case. Given a wireless mesh network and d
non-overlapping channels, suppose each mesh router in the network equips d network
interfaces. Thus a connected d-edge coloring subnetwork can be chosen to transport data,
since all the adjacent links in this subnetwork can use different channels to reduce wireless
interference and increase network throughput.

For edge coloring, Vizing [5] states that for any graph G, either χ ′
(G) = ∆(G) or

χ ′
(G) =∆(G)+1, where chromatic index χ ′

(G) is the minimum number of colors needed
in an edge coloring of G. Based on the statement, we can find a connected subgraph with
maximum degree no more than d − 1 in G and this subgraph must be d-edge colorable.
Thus the original problem can be solved by finding a transport subnetwork with maximum
degree no more than d−1 given fixed network topology and d non-overlapping channels.

1.2 Related Work
Bounded degree minimum spanning tree problem: Given a weighted graph G =

(V,E,c) and a positive integer k ≥ 2, ask for a minimum cardinality (weight) spanning
tree with maximum degree no more than k, where c is a weighted function defined on E,
c : E → R+.

Clearly, the problem is NP-hard. In 1991, Michel X. Geomans proposed the following
conjecture.

Conjecture: In polynomial time, one can find a spanning tree of maximum degree no
more than k+1 whose cost is at most OPT (k), the minimum cost of any spanning tree of
maximum degree no more than k.

84 The 8th International Symposium on Operations Research and Its Applications



1. Input: a connected graph G = (V,E) and a integer d ≥ 3
2. Output: a spanning subgraph HALG with maximum degree no more than d

3. Compute a spanning tree T in G with ∆(T )≤ d;
4. Define a function f (v) : V → Z, for any vertex v in V , f (v) = d −dT (v);
5. Compute a maximum f -matching M f in the residual graph G′ = G− T with

dM f (v)≤ f (v);
6. Let HALG = T ∪M f , output HALG.

Figure 1: Algorithm 1

Michel X. Geomans [6] proves that one can find a spanning tree of maximum degree
no more than k+ 2 whose cost is at most OPT (k) in polynomial time. In 2007, Mohit
Singh and Lap Chi Lau [7] proved the conjecture. The algorithms proposed in [6, 7] are
all based on linear programming.

2 Approximation algorithms based on bounded degree
spanning trees

In this section, approximation algorithms for bounded degree maximum spanning sub-
graph will be designed. The main idea is natural. First, we construct a bounded degree
spanning tree to guarantee the connectivity and then try to add as many edges as possible
to the tree keeping the degree bound at the same time.

The problem of finding bounded degree minimum spanning tree has been well studied
and an approximation algorithm based on linear programming has been designed. We will
make use of a bounded degree spanning tree to construct the backbone of transport sub-
networks and maximize the number of links in the subnetworks by maximum b-matchings
to increase the throughput of wireless mesh networks. A maximum b-matching is a nat-
ural generalization of a maximum matching. Given a graph G = (V,E) and an integer
function b(v) : V → Z+, if Mb is a subset of edge set E and satisfying that for every vertex
v of G, the degree of v in the subgraph induced by Mb is less than or equal to b(v), then
Mb is called a b-matching of G. A maximum b-matching is a b-matching with maximum
number of edges among all the b-matchings. In 1983, Gabow [8] designed an algorithm
of complexity O(∣V ∣∣E∣ log ∣V ∣) for finding a maximum b-matching.

Corresponding to the cases of link bandwidth equal to each other or not, we will
design approximation algorithms for cardinality case and weighted case respectively.

2.1 Cardinality case
There exists a polynomial time algorithm to find a spanning tree of maximum degree

at most k+1 in a graph with a spanning tree of maximum degree k. Here, we assume that
the fixed integer d ≥ ∆(T )+1, where T is a spanning tree of G with the least maximum
degree. Thus, d ≥ 3.

Fig. 2-4 give a demo of Algorithm 1. The input instance is a connected graph with 10
vertices and 19 edges, and the degree bound d is 3.

Approximating Bounded Degree Maximum Spanning Subgraphs 85



d
(
v
1
)
=
2


d
(
v
2
)
=
4


d
(
v
3
)
=
4


d
(
v
4
)
=
3


d
(
v
5
)
=
6


d
(
v
6
)
=
4


d
(
v
7
)
=
5


d
(
v
8
)
=
4


d
(
v
9
)
=
4


d
(
v
1
0
)
=
2


Figure 2: (3) compute T : ∆(T )≤ 3. The bold edges are edges in T .

f
(
v
1
)
=
2


f
(
v
2
)
=
2


f
(
v
3
)
=
0


f
(
v
4
)
=
1


f
(
v
5
)
=
0


f
(
v
6
)
=
2


f
(
v
7
)
=
0


f
(
v
8
)
=
1


f
(
v
9
)
=
2


f
(
v
1
0
)
=
2


Figure 3: (4,5) compute M f : dM f (v)≤ f (v). The bold edges are edges in M f .

Now, we analyze the time complexity of Algorithm 1. In the first step, the spanning
tree with degree bound d can be constructed in O(∣V ∣∣E∣ log ∣V ∣α(∣V ∣)) time by employing
the approximation algorithm proposed in [9], where α is inverse Ackerman function. The
second step costs O(∣V ∣) time. In the third step, a maximum b-matching can be found
in O(∣V ∣∣E∣ log ∣V ∣) time. The fourth step costs O(∣V ∣) time. As a consequence, the time
complexity of Algorithm 1 is O(∣V ∣∣E∣ log ∣V ∣α(∣V ∣)). Then we discuss the approximation
ratio of Algorithm 1.

Theorem 1. For any connected graph G, the approximation ratio of Algorithm 1 is 2.

Proof: Let HOPT be an optimal solution, thus HOPT is a maximum spanning subgraph
of G with maximum degree no more than d. Let HALG = T ∪M f be the subgraph output
by Algorithm 1 and n be the number of vertices in G.

Based on Algorithm 1, HALG is a maximum subgraph of G with the degree bound and
T being its subgraph. Thus, for any subgraph H with ∆(H)≤ d and T being its subgraph,
∣E(H)∣ ≤ ∣E(HALG)∣. If we add all the edges which are not in HOPT but in T into HOPT and
delete some edges in HOPT to keep the degree bound at the same time, then an instance of
H can be obtained.

Without loss of generality, suppose there are x(1 ≤ x ≤ n−1) edges in T not in HOPT .
When adding one of the x edges into HOPT , it is easy to see that only the degrees of the
two endpoints of the edge are affected and each of them increased by one. There are three
cases.

86 The 8th International Symposium on Operations Research and Its Applications



d
(
v
1
)
=
2


d
(
v
2
)
=
4


d
(
v
3
)
=
4


d
(
v
4
)
=
3


d
(
v
5
)
=
6


d
(
v
6
)
=
4


d
(
v
7
)
=
5


d
(
v
8
)
=
4


d
(
v
9
)
=
4


d
(
v
1
0
)
=
2


Figure 4: (6) output HALG = T ∪M f . The bold edges are edges in HALG.

1. the degrees of both endpoints are still bounded by d: no edges in HOPT need to be
deleted.

2. the degree of one of the two endpoints is greater than d: just delete one edge in
HOPT not in T incident to the endpoint to keep the degree bound.

3. the degrees of both endpoints are greater than d: it means after the edge is added
into HOPT , the degrees of its two endpoints in HOPT are increased to d + 1. For
each endpoint, just delete one edge in HOPT not in T incident to it to keep the
degree bound.

It is easy to see at each step, the number of edges in HOPT decreases by one at most.
Thus, ∣E(H)∣ ≥ ∣E(HOPT )∣ − x ≥ ∣E(HOPT )∣ − n+ 1. On the other hand, ∣E(HALG)∣ ≥
∣E(H)∣, thus ∣E(HALG)∣ ≥ ∣E(HOPT )∣−n+1 and ∣E(HOPT )∣ ≤ ∣E(HALG)∣+n−1. Clearly,
∣E(HALG)∣ ≥ ∣T ∣= n−1. As a consequence,

OPT (G)

ALG(G)
≤ ∣E(HALG)∣+n−1

∣E(HALG)∣
= 1+

n−1
∣E(HALG)∣

≤ 2 (1)

□

2.2 Weighted case
Let G = (V,E,c) be an edge weighted graph, where c is a cost function defined on the

edge set E, c(e) : E → R+. Denote by c(e) the cost of an edge e. Let c(H) = ∑e∈E(H) c(e)
be the cost of H, where H is a subgraph of G.

In this case, in order to reuse the framework of Algorithm 1, we need to construct a
bounded degree maximum spanning tree. We will construct the tree based on the algo-
rithm of finding bounded degree minimum spanning trees. Let G= (V,E,c) be a weighted
graph, where c : E → R+ is a weight function defined on E. Let w be the maximum weight
of the edges in G, w = MAXe∈Ec(e). Construct a weighted graph G′ = (V,E,c′), where
c′ : E → R+ and c′(e) = w+1−c(e). Clearly, a bounded degree maximum spanning tree
in G corresponds to a bounded degree minimum spanning tree in G′.

On the other hand, there exists a polynomial time algorithm to find a spanning tree of
maximum degree no more than k+1 and with its cost at most OPT (k), where OPT (k) is

Approximating Bounded Degree Maximum Spanning Subgraphs 87



1. Input: a edge weighted connected graph G = (V,E,c) and a integer d ≥ 2
2. Output: a spanning subgraph HALG with maximum degree no more than d+1

3. Compute a spanning tree T in G with ∆(T )≤ d+1 and c(T )≥ c(Td), where Td
is a maximum weight spanning tree with ∆(Td)≤ d;

4. Define a function f (v) : V → Z, for any vertex v in V , f (v) = d +1−dT (v);
5. Compute a maximum f -matching M f in the residual graph G′ = G− T with

dM f (v)≤ f (v);
6. Let HALG = T ∪M f , output HALG.

Figure 5: Algorithm 2

the minimum cost of any spanning tree of maximum degree no more than k. Thus, we can
compute a spanning tree of maximum degree no more than k+1 and with its cost at least
OPT ′(k), where OPT ′(k) is the maximum weight of any spanning tree with maximum
degree no more than k.

Based on the discussions above, we get Algorithm 2 for weighted case.

Theorem 2. For any edge weighted connected graph G, Algorithm 2 returns a spanning
subgraph HALG in G with ∆(HALG)≤ d+1 and c(HALG)≥ OPT (G)

d+2 , where OPT (G) is the
weight of optimal solutions.

Proof: Let HOPT be an optimal solution, thus HOPT is a maximum spanning subgraph
of G with maximum degree no more than d. Let HALG = T ∪M f be the subgraph output
by Algorithm 2. Let TOPT be a maximum spanning tree in HOPT . Clearly, the maximum
degree of TOPT is no more than d, thus c(TOPT )≤ c(Td)≤ c(T ).

Based on Algorithm 2, HALG is a maximum subgraph of G with ∆(HALG) ≤ d + 1
and T being its subgraph. Thus, for any subgraph H with ∆(H) ≤ d + 1 and T being
its subgraph, c(H) ≤ c(HALG). Similarly, to obtain an instance of H, we can add all the
edges which are not in HOPT but in T into HOPT and delete some edges to keep the degree
bounded d +1.

Now we describe how to delete edges. For each vertex v in V , dT (v)−1 edges need to
be deleted at most in order to keep the degree bounded d +1. Clearly, the edges incident
to v in HOPT not in T are either in TOPT or in HOPT −TOPT .

If such an edge e belongs to HOPT − TOPT , then c(e) is less than or equal to c(ev),
where ev is the edge between v and its parent in TOPT , since TOPT is a maximum spanning
tree in HOPT . Thus the cost of the edges incident to v in HOPT −TOPT to be deleted must
less than or equal to d×c(ev). Considering all the vertices, we know that the total cost of
the edges in HOPT −TOPT to be deleted is no more than d × c(TOPT ).

On the other hand, the sum of weights of edges need to be deleted in TOPT is less than
or equal to c(TOPT ).

Thus, c(HOPT )− (d + 1)× c(TOPT ) ≤ c(H) ≤ c(HALG) and c(HOPT ) ≤ c(HALG) +
(d +1)× c(TOPT ). Clearly, c(TOPT )≤ c(T )≤ c(HALG). As a consequence:

88 The 8th International Symposium on Operations Research and Its Applications



v


e
v


e


Figure 6: c(e)≤ c(ev)

OPT (G)

ALG(G)
≤ c(HALG)+(d +1)× c(TOPT )

c(HALG)

= 1+
(d +1)× c(TOPT )

c(HALG)

≤ d +2

(2)

□

References
[1] M. Kodialam and T. Nandagopal. Characterizing achievable rates in multi-hop wireless net-

works: the joint routing and scheduling problem. MobiCom 2003: 42-54.
[2] M. Alicherry, R. Bhatia and L.E. Li. Joint channel assignment and routing for throughput

optimization in multi-radio wireless mesh networks. MobiCom 2005: 58-72.
[3] Weizhao Wang, Yu Wang, Xiang-Yang Li, Wenzhan Song and Ophir Frieder. Efficient

interference-aware TDMA link scheduling for static wireless networks. MobiCom 2006: 262-
273.

[4] Jie Gao, Leonidas J. Gubas, John Hershberger, Li Zhang and An Zhu. Geometric spanners
for routing in mobile networks. IEEE Journal on Selected Areas in Communications 23(1):
174-185, 2005.

[5] Vizing V.G. On an estimate of the chromatic class of a p-graph. (in Russian) Diskret. Analiz.
3: 25-30, 1964.

[6] Michel X. Goemans. Minimum bounded degree spanning trees. FOCS 2006, 273-282.
[7] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to

within one of optimal. STOC 2007: 661-670.
[8] H.N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected

network flow problems. STOC 1983: 448-456.
[9] Martin Fürer and Balaji Raghavachari. Approximating the minimum degree spanning tree to

within one from the optimal degree. SODA 1992: 317-324.

Approximating Bounded Degree Maximum Spanning Subgraphs 89




