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Abstract Given a weighted directed hypergraph H = (V, Eg;w), where w : Ey — R™, we con-
sider the problem of embedding all weighted directed hyperedges on a mixed cycle, which consists
of undirected and directed links. The objective is to minimize the maximum congestion of any
undirected or directed link in the mixed cycle. In this paper, we first formulate this new problem
as an integer linear program, and by utilizing a nontrivial LP-rounding technique, we design a 2-
approximation algorithm. Then, we design a combinatorial algorithm with approximation ratio 3
for the problem, whose running time is O(nm). Finally, we present a polynomial time approxi-
mation scheme (PTAS) for the special version where each directed hyperedge only contains one
sink.

Keywords Mixed cycle; Directed hypergraph embedding; LP-rounding; Approximation algo-
rithm; PTAS

1 Introduction

Due to the extensive applications in various areas such as computer networks, multi-
cast communication, parallel computation, electronic design automation, the hypergraph
embedding problem received more and more attention in past twenty years. The most im-
portant problem, called as weighted hypergraph embedding in a cycle (WHEC), is to em-
bed hyperedges of the hypergraph H = (V, Ey;w) as adjacent paths of a cycle C = (V,E)
such that the maximum congestion of any physical link on the cycle is minimized.

For the WHEC problem, the hyperedges of the hypergraph and the links in a cycle
are both undirected. For the version where all hyperedges are unweighted, Ganley and
Cohoon [4] proved that the WHEC problem is NP-hard and gave a 3-approximation algo-
rithm. Genzalez [5] designed two improved 2-approximation algorithms for the WHEC
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problem. Gu and Wang [6] presented a 1.8-approximation algorithm by a reembedding
approach. Recently, Deng and Li [2] proposed a polynomial time approximation scheme
(PTAS) by using randomized rounding technique. For the weighted version, Lee and
Ho [9] first proposed an LP-based rounding algorithm and then developed a linear-time
approximation algorithm to provide an embedding with congestion at most two times the
optimum. The same authors [7] recently designed an 1.5 4 €-approximation algorithm for
any € > 0. The well-known question whether there exists a PTAS for the WHEC problem
is still open. For each hyperedge only consisting of two nodes, the WHEC becomes the
well-known ring loading problem, and some classical results can be found in [8, 12].

Similar to the WHEC problem, Li and Wang [10] first defined a directed hyperedge
in the following way: a directed hyperedge & = (u,S) is a pair, where u € V is indicated
as the source of the directed hyperedge i and S C V — {u} is the set of sinks. In commu-
nication applications, each directed hyperedge / represents a request that asks to send a
message from u to every vertex in S. Afterward, they considered the directed hypergraph
embedding in a cycle (DHEC), where the hyperedges of the hypergraph and the links in
the cycle are directed (this definition can be found in [10] or in the next section), and
they present a PTAS to solve the DHEC problem by extending the randomized rounding
method in [2]. But the NP-hardness of the DHEC problem is still open. For each directed
hyperedges only consisting of two nodes, the DHEC becomes the well-known directed
ring loading problem, and some related results can be found in [1, 11].

In this paper, we introduce a new cycle model, called mixed cycle, which contains
some undirected links and the other bidirected links in the cycle such that this model gen-
eralizes both the undirected cycle and directed cycle model. To the best of our knowledge,
there are no related results about such a mixed cycle model. We consider a new problem,
called as weighted directed hypergraph embedding in a mixed cycle (WDHEMC). The
objective is to embed all directed hyperedges of the hypergraph H = (V,Ey;w) as adja-
cent “paths” of a mixed cycle C = (V,E,A) such that the maximum congestion of any
undirected link or directed link in the mixed cycle is minimized.

We can construct an integer linear programming to present the WDHEMC problem,
and we know the fact that the basic LP-rounding technique for the undirected version
in [5, 9] can not be extended to the WDHEMC problem. By utilizing a nontrivial LP-
rounding technique, we obtain a new LP-based 2-approximation algorithm to solve the
WDHEMC problem. We also present a combinatorial algorithm with an approximation
bound 3 for the WDHEMC problem, and show that this bound is tight. By utilizing the
standard technique in [1, 8, 11, 12], we obtain a PTAS to solve the WDHEMC problem
for the version where each directed hyperedge exactly consists of two nodes.

This paper is organized as follows: we first give some definitions in Section 2. Then
we present two approximation algorithms in Section 3 for the WDHEMC problem. A
PTAS for the special version where each directed hyperedge contains only two nodes
is given in Section 4. We conclude our work with some remarks and discussions about
future research directions in the last section.

2 Preliminaries

A mixed cycle of n nodes is a mixed graph C = (V,E,A), where V. ={1,2,... ,n} is the
set of n vertices on the mixed cycle C, and E (A, resp.) is the set of undirected (directed,
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resp.) links. For each i = 1,2, ...,n, either undirected link e; = (i,i + 1) belongs to E, or
both directed links e;” = (i,i+ 1) and e; = (i+ 1,i) belong to A, where we treat the node
n+1i as the node i for 1 < i < n. For the version where A = 0, the mixed ring becomes a
undirected cycle, and for the version where E = 0, the mixed ring becomes a bidirected
cycle. As in [10], a directed hyperedge & = (u, S) is a pair, where u € V is indicated as the
source of the directed hyperedge 7 and S C V — u is the set of sinks. In communication
applications, each directed hyperedge & represents a request asked to send a message from
u to every vertex in S. Let H = (V, Ey;w) denote a directed hypergraph with the same set
of vertices V and a set of m directed hyperedges Epy = {h1,ha, ..., }.

For each directed hyperedge /; = (u;,S;) € Ey, where S; = {il,i},... ,i,ij} and k; =|
Sj
on the mixed cycle C. For convenience, we use i{) to denote u;. Assume that the k; + 1

, let w; denote the weight of /;, and we sometimes treat such weight as the load of h i

vertices ij),],...,i; are sorted in clockwise order on the cycle C and i, is the source of the
J

directed hyperedge h;. For each k =0,1,...,k; —1, let P,f be the embedding of directed
hyperedge i; which can be obtained by cutting the segment of vertices on the cycle from
vertex ii to vertex ii +1- Itis easy to verify that the embedding P,‘(’ consists of two directed
path: one is from i} to i,]c in the clockwise direction, and the other is from i to i} L in
the counterclockwise direction. The embedding Pk’J is obtained by cutting the segment

of vertices on the cycle from vertex i} to vertex i), i.e., P consists of one directed path
J J

which is from ié to li in the clockwise direction. For convenience, we also treat PIZ as the
set of links used in the embedding.

For two directed links ¢ = (i,i+ 1) and ¢; = (i + 1,i), define C;” = U;’LlC;Jf and
¢ =UL,C;, where Cf] = {P,f | el € P k= 0,1,2,....k;} and C;; = {Pk’ | e € Pl
k=0,1,2,...,k;}, and then we set C; = C;" UC; . For each embedding P} of the directed
hyperedge h;, we introduce a binary variable xi (k=10,1,...,k;) to represent such an
embedding P/, where xi = 1 if we choose Plg as the embedding of the directed hyperedge
hj and xi = 0 otherwise. Given an embedding x of all the directed hyperedges in Ey, the
congestion of the link e; (el-+ or ¢; ) is the overall weight of the directed hyperedges whose
embedding contain such a link.

Now, we construct an integer linear program to present the WDHEMC problem as
follows (for convenience, we denote this programming as ILP):
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min B
clef) = Z wjxi < By ¢ =(ii+1)€A
plect
ce)=Y wixl < By e =(i+1i)€A
Plec;
cle)=Y wix+ Y wixl < B e=(,i+1)€E
plect Plec;
ki
Yx = L j=12..m
k=0

j
Xk

m

0,1} j=1,2,...mk=0,1,....k

It is easy to find that WDHEMC problem is NP-hard by reduction from the PARTI-
TION problem as in [9]. When we relax the preceding ILP as the relaxed LP and require
only that 0 < xi < 1 for all integers j and £, it is easy to find that the LP-based rounding
algorithm in [5] can not be extended here to produce a 2-approximate solution. Hence,
we need some new ideas. The nontrivial LP-based rounding algorithm is presented in the
following section.

3 Two Approximation Algorithms for the WDHEMC
problem

For any feasible solution x to the relaxation of ILP, we define x(Cl-J;- ) =Y xﬁ and

Plec;
x(C;) = ZP,jeCi; x;. Foreach j=1,2,...,m, itis easy to verify that wx(C}}) and wx(C;;)
are the contributions of directed hyperedge h; to the directed link ¢;" and to the directed
link e;", respectively.

Lemma 1. Given a feasible solution x, for each directed hyperedge /;, we have x(C +

don) T
x(C; )=1foreacht=1,2,... k;.

i —1)j
il

Proof. For each directed hyperedge ;, as every embedding P,f must contain the vertex i,j ,

we have the fact PIZ is either in ij ; OF in C; . Combining the fact that x is a feasible
i it

solution subject to ):],z’: 0 x,{ = 1, the lemma holds. d
Lemma 2. For each directed hyperedge A;, we have x(Cf) > x(C(*_jH) )> >
ioJ iy J
ct. >x(CT)> - > x(CT. >x(Ct VY=... =x(Ct. =0.
x( (,._{71)].) > x( i-fj) > > x( %*Ui) > x( ii,.i) x( (i-grm)

Proof. According to the definitions of P,g and C; , we have P,g eC;t (ié <i< zi) and
Pl ¢ C; (i) < i< iy), which implies that Cioj D C(%H)]_ D..-D C(i{—l)j ) Ci{j 22
C+- D) C+

J 2C; == C*,j .= . Hence, the lemma holds. O
(’k_f ) ;) (fp—1)j
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Corollary 1. For each directed hyperedge /;, we have 0 = x(C )=x(C, ==

igJ (ig+1)j
(C(_ 1) )<x(Cj )< Sx(c(_»j ) <x(C; ) <--<x(C, ). 0
iJj l]"j i J

~1)J l (i1

Let x denote the fraction optimal solution to the relaxed LP. Our LP-based algorithm
is constructed as follows:

LP-based Algorithm

Step 1 Solve the relaxed LP, and then get an optimal fraction solution Xx.

Step 2 For each directed hyperedge 4;, find smallest k such that E(CJ]“) < 0.5, and set
i J

X =1landx), =0 (K #k).

Theorem 1. The maximum congestion of the feasible solution X produced by the LP-
based algorithm is at most 2-OPT, where OPT denotes the value of the optimal solution.

Proof. We rewrite the representation of c(e;") and c(e; ) as c(e;") = Y3, w;x(C; j) and
c(e; ) = Xy w;jx(C;;). For each directed hyperedge h;, we assume that we get X x =1
after running the LP-based algorithm. We distinguish the following three cases.

Case 1. i}, <i < il. According to the choice of LP-based algorithm, we have x(C(+ iy )

>0.5. By Lemma 2, we have X(C;;) > 0.5, which implies X(C}7) = 1 <2X(C}5). Itis easy
to verify that x( ;) =0<2x(C; )

Case 2. zk <i< ’k+1' We have x(Cf) 0< 2x(C+) and X(C;;) = 0 < 2x(C;;).

Case 3. i,; i< ié According to the choice of LP-based algorithm and Lemma 2,

we have x(C(+ " ) <0.5. Combining Lemma 1 and Corollary 1, we have x(C;;) > 0.5.
’k+1 J

Hence, X(C;;) = 1 < 2x(C;;). Itis easy to verify that x(C$) =0< 2x(C¥).
By the fact that the value of the optimal solution X to the relaxed LP provides a lower
bound on OPT, for each ef € A, we have

ijx ) < 2Zw,x (Cf) < 20PT;
and for each e;” € A, we have
m m
cle;) =Y, wix(C;;) <2 ) wix(C;;) < 20PT;
—1 k=1
and for each ¢; € E, we have

m m

E(ei): ( )+C ZW])C ij +ZW/)C 11 <2 Z 1] +ZWIECV(C;))
k=1 k=1

<20PT.

This establishes the conclusion of the theorem. O

In order to improve the efficiency, by utilizing the strategy similar to that in [9], we
can embed each directed hyperedge /; in the shortest way which means using links in the
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mixed cycle as few as possible, we call it shortest embedding algorithm. We obtain the
following results.

Theorem 2. For any instance of the WDHEMC problem, the shortest embedding algo-
rithm can produce an embedding of directed hyperedges on a cycle with the congestion at
most 3 times the optimum value. The running time is O(nm), and the bound 3 is tight. OJ

Corollary 2. For the case where E = 0, the shortest embedding algorithm can produce
an embedding of directed hyperedges on a cycle with the congestion at most 2 times the

optimum value. The running time is O(nm), and the bound 2 is tight. ]
4 A PTAS for the Special Version
In this section, we study the problem for the version k; = 1 forall j=1,2,...,m, and

we denote this version as the mixed ring loading problem. When A = 0, this problem
is deeply studied in [8, 12] and there is a PTAS to solve it completely. Based on the
same ideas in [8, 12], Becchetti et al. [1] designed a PTAS to solve the problem for the
version E = (). We extend the method to our mixed ring and present a PTAS to solve the
WDHEMC problem for the version k; = 1 forall j=1,2,...,m.

By solving the LP-based algorithm in Section 3, we can get a feasible solution with
objective value B < 20PT. Note that each hyperedge has two routing ways. For any
fixed positive number € < 1, following from the ideas in [1, 8, 12], a directed hyperedge
is routed long-way if it uses the longer path to connect its end-vertices (ties are broken
arbitrarily), and it is routed short-way otherwise. For convenience, a directed hyperedge
hj is called heavy if w; > €B/5 and otherwise as light.

Lemma 3. In any optimal solution, there are at most 20/¢ heavy, long-way routed di-
rected hyperedges. ]

Let H C Eg and L = Eg — H denote the set of heavy directed hyperedges and the set of
light directed hyperedges, respectively. For each subset S C H, we route the hyperedges
in S in long way. Let s(e;") (s(e; ), resp.) denote the congestion of ;" (e; ,resp.) resulting
from routing the directed hyperedges in S in the long-way and the directed hyperedges in
H — § in the short-way. In this special case, for each directed hyperedge /4, there are only
two indicator variables: x{ (clockwise) and x{) (counterclockwise).

For any set S, we get the following integer linear program (denote it as LPs):

min B
clef)=s(ehH)+ ) wix] < By ef =(ii+1)eA
xeCt hjelL
clef)=sle;)+ Y wi) < B e =(i+1,i)€A
xheC el
clei)=clef)+cle;) < By ei=(i,i+1)€EE
xé+x{ = 1; hjel

xxl e {0,1}; hjeL

Finally, let X denote the optimal fractional solution of LPs. By using the original
notations similar to [12], we call that two directed hyperedges #; = (u;j,{s;}) and Iy =
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(ug, {s}) are parallel if the intervals [u,s;] and [si,u;] or the intervals [s;,u;] and [u, s¢]
intersect at most at their endpoints. We call a directed hyperedge h; parallel to e}, if

J +.
P e G

hyperedge £; is called split if 0 < )?{ <1

otherwise it is parallel to e¢; . For any optimal solution X to LPs, a directed

Lemma 4. There exists an optimal solution X such that no pairs of parallel hyperedges
are both split. |

As the strategy in [12], without loss of generality, we assume that the split directed
hyperedges are numbered as Lg = {h1,ha,...,h,}. Since no split directed hyperedges are
parallel, we may order them clockwise simultaneously by source u; and by sink s;. For
any link e;", there is a interval [[;,;] C {1,2,...,q}, interpreted if necessary “around the
corner” modulo ¢, which contains exactly the indices of the hyperedges in Lg which are
parallel to the link ¢;". For the link e; ,the indices are [r;+ 1,7; — 1].

Using the rounding technique as in [12], we give an integer solution x’ recursively by
putting:

ye { 1w X e —F) < -7
0 otherwise

Correspondingly, we set xg =1 —x’jl and denote W = 8§/ 5. By induction, we can con-
clude that any partial sum ¥, wy(x{ —¥/) lies in the half-open real interval [ %, ¥').

Asin [1, 12], we can prove the following theorem.

Theorem 3. For any link ¢; (¢; or e;"), we have ¢(e;) < ¢(e;) + €OPT. O
We now construct our PTAS to solve the mixed ring loading problem as follows:

Algorithm Mixed Ring Loading

Step 1. Route the hyperedges in each subset S in the long way and the hyperedges in
H — S in the short way respectively.

Step 2. Solve LPg corresponding to S, and obtain an optimal fraction solution Xg.

Step 3. Among the fraction solutions, choose the solution X with the minimum con-
gestion, then convert it to an integer solution x” by utilizing the previous rounding
technique.

Theorem 4. The Mixed Ring Loading algorithm produces a feasible solution x’, whose
value is at most (1 + €)OPT, where OPT is the optimal value, and the time complexity is
polynomial, for any fixed € > 0. (]

5 Conclusion

In this paper, we study the problem of embedding a directed hypergraph in a mixed
ring. The objective is to minimize the maximum congestion of the links in the mixed ring.
We derive a 2-approximation algorithm based on linear programming, a 3-approximation
combinatorial algorithm in O(mn) time, and a PTAS for the special case where each
directed hyperedge contains only two nodes.

Since the undirected version of weighted hypergraph embedding only has a 1.5 4 &-
approximation algorithm [7], can we design a better approximation algorithm with ap-
proximation ratio less than 2 to the weighted directed version? Can we find a polynomial
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algorithm for the unweighted version of directed hypergraph embedding problem? These
problems are interesting to be discussed in further study.
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