
Approximation Schemes for Scheduling on
Parallel Machines with GoS Levels∗

Weidong Li1 Jianping Li1 Tongquan Zhang2

1Department of Mathematics, Yunnan University, Kunming 650091, PR China
2School of Mathematics and Computer Science
Yunnan Nationalities University, Kunming, 650031, PR China

Abstract We consider the offline scheduling problem of minimizing the makespan on m parallel
and identical machines with certain feature. Every job and machine are labeled with the grade of
service (GoS) levels, and each job can only be processed by the machine whose GoS level is no more
than that of the job. In this paper, we present a polynomial time approximation scheme (PTAS) with
running time O(n logn) for the special case where the GoS level is either 1 or 2, where the hidden
constant depends exponentially on the reciprocal value of the desired precision. This solves an open
problem left in [11] partially. We also present a new full polynomial time approximation scheme
(FPTAS) with running time O(n) for the case where the number of machines is fixed.

Keywords Approximation algorithm; GoS level; Makespan; PTAS; FPTAS

1 Introduction
Model: Given a set M = {M1, . . . ,Mm} of machines and a set J = {J1, . . . ,Jn} of

jobs, each job J j has the processing time p j and is labelled with the grade of service
(GoS) level g(J j), and each machine Mi is also labelled with the GoS level g(Mi); Job J j
is allowed to be processed by machine Mi only when g(J j) ≥ g(Mi). The goal is to par-
tition the set J into m disjoint bundles, S1, . . . ,Sm, such that max1≤i≤m Ci is minimized,
where Ci = ∑J j∈Si p j and J j ∈ Si only if g(J j) ≥ g(Mi). Using the three-field notation of
Graham et al. [3], we denote this scheduling model as the problem P∣GoS∣Cmax. Hwang,
Chang and Lee [5] first proposed this problem and designed a strongly polynomial 2-
approximation algorithm. In this paper, we consider a variant of the problem P∣GoS∣Cmax
where g(J j),g(Mi) ∈ {1,2}. We denote this problem as P∣GoS2∣Cmax. We also consider
another variant of the problem P∣GoS∣Cmax where the number m of machines is fixed. We
denote this problem as Pm∣GoS∣Cmax.

Previous related work: Zhou, Jiang and He [14] proposed a 4
3 +(1

2)
r-approximation

algorithm for the problem P∣GoS2∣Cmax, where r is the desired number of iterations. Jiang
[8] studied the online version of the problem P∣GoS2∣Cmax and proposed an online algo-
rithm with competitive ratio 12+4

√
2

7 . Ji and Cheng [7] designed an full polynomial time
∗The work is fully supported by the National Natural Science Foundation of China [No.10861012], Natu-

ral Science Foundation of Yunnan Province [No.2006F0016M] and Foundation of Younger Scholar in Science
and Technology of Yunnan Province [No.2007PY01-21]. E-mail addresses: jeeth@126.com (W. Li), jian-
ping@ynu.edu.cn (J. Li), tqzh1979@yeah.net (T. Zhang).

The Eighth International Symposium on Operations Research and Its Applications (ISORA’09)
Zhangjiajie, China, September 20–22, 2009
Copyright © 2009 ORSC & APORC, pp. 53–60

approximation scheme (FPTAS) for the problem Pm∣GoS∣Cmax. Note that Pm∣GoS∣Cmax
is a special case of the unrelated parallel machines scheduling problem with fixed num-
ber of machines, which possesses many FPTASs [2, 4, 6, 12, 13]. Ou, Leung and Li
[11] designed a PTAS with running time O(mn2+ 8

ε log2
4
ε logP+m logm) for the problem

P∣GoS∣Cmax, where P = ∑n
j=1 p j. They also posed as an interesting problem the question

of whether there is a PTAS for P∣GoS∣Cmax with improved running time. Note that the
problem P∣GoS∣Cmax is a generalization of identical parallel scheduling problem, which
possesses a linear time approximation scheme [1]. Other related results can be found in
the recent survey [10].

Our contributions: In this paper, we design a PTAS with running time O(n logn)
to solve P∣GoS2∣Cmax, which partially answers the open question of whether there is a
PTAS for P∣GoS∣Cmax with improved running time in [11]. We also design an FPTAS
with running time O(n) for the problem Pm∣GoS∣Cmax. Our FPTAS is simpler than the
previous approximation schemes.

2 An Improved PTAS for P∣GoS2∣Cmax
Hwang et al. [5] proposed a simple 2-approximation algorithm for the problem

P∣GoS∣Cmax, called lowest grade-longest processing times first (LG-LPT, for short) al-
gorithm, whose running time is O(n logn). For a given instance I = (M ,J) of the
problem P∣GoS2∣Cmax, let L be the value of the solution produced by LG-LPT algorithm,
we have L ≤ 2OPT , where OPT denotes the optimal value of the instance I = (M ,J).

Without loss of generality, we assume that g(M1) = g(M2) = ⋅ ⋅ ⋅ = g(Mk) = 1 and
g(Mk+1) = g(Mk+2) = ⋅ ⋅ ⋅= g(Mm) = 2. Let J[i] denote the set of jobs with GoS level i,
i.e., J[i] = {J j ∣ g(J j) = i} (i = 1,2). The jobs in J[2] can be processed by any machines,
and the jobs in J[1] can only be processed by the first k machines with GoS level 1.

For any given constant ε , let δ = 1
λ = 1

⌈ 5
ε ⌉

. We partition the jobs into two subsets: large

jobs set J L and small jobs set J S, where J L = {J j∣p j > δL} and J S = {J j∣p j ≤ δL}.
For any given instance I = (M ,J) of the problem P∣GoS2∣Cmax and a given constant ε ,
we construct a new instance Î = (M ,Ĵ L ∪J A) as follows. Let J S

[i] = J S ∩J[i]

(i = 1,2). Thus, J S
[i] contains those small jobs with GoS level i. Similar to [11], we

replace these jobs in J S
[i] by ⌈∑J j∈J S

[i]
p j/δL⌉ auxiliary jobs with GoS level i, where

each auxiliary job has a processing time of δL. Let J A
[i] be the set of auxiliary jobs

with GoS level i and J A = J A
[1] ∪J A

[2] be the set of all auxiliary jobs. For each job in
J j ∈ J L, we round its processing time p j to p̂ j, where

p̂ j = ⌈ p j

δ 2L
⌉ ≤ p j +δ 2L ≤ (1+δ)p j.

Let Ĵ L denote the set of jobs with scaled-up processing times. Note that all jobs
in the instance Î = (M ,Ĵ L ∪J A) have processing times of the form kδ 2L, where k ∈
{λ ,λ +1, . . . ,λ 2} and λ = 1/δ . Thus, Ĵ L ∪J A contains jobs with at most λ 2 −λ +1
different processing times. From now on, for a job in any instance, we refer it as a large
job if it has the processing time > δL and otherwise as a small job.

54 The 8th International Symposium on Operations Research and Its Applications

Lemma 1. The optimal value ÔPT of the instance Î is at most (1+ δ)OPT + δL ≤
(1+2δ)L, where OPT denotes the optimal value of the instance I.
Proof. In the optimal schedule (S1,S2, ⋅ ⋅ ⋅ ,Sm) for the instance I, replace every large
job J j in the instance I by its corresponding job Ĵ j in the instance Î. This may increase
some machine completion times by a factor of at most 1+ δ , as p̂ j ≤ (1+ δ)p j. let si
denote total processing times of small jobs which are processed by machine Mi in the
solution (S1,S2, ⋅ ⋅ ⋅ ,Sm), i.e., si = ∑J j∈Si∩J S p j. Clearly, we have ∑m

i=k+1 si ≤ ∑J j∈JS
[2]

p j.

We assign auxiliary jobs with GoS level 2 in Î to the last m−k machines with GoS level 2
as many as possible, subjected to that each machine is assigned at most ⌈si/δL⌉ auxiliary
jobs. Then, we assign at most ⌈si/δL⌉ remaining auxiliary jobs to first k machines. It is
easy to see that every auxiliary jobs in Î must be assigned in this way. Hence, we conclude
that the completion time of machine Mi is at most (1+δ)OPT +δL ≤ (1+2δ)L.

Next, we will show how to solve instance Î optimally in linear time. The jobs in the

instance Î can be represented as a set N = {
−→
ni ∣

−→
ni = (ni

λ ,n
i
λ+1, . . . ,n

i
λ 2); i = 1,2}, where

ni
k (k = λ ,λ + 1, ⋅ ⋅ ⋅ ,λ 2) denote the number of jobs with GoS level i whose processing

times are equal to kδ 2L. An assignment to a machine is a vector −→v = (vλ ,vλ+1, . . . ,vλ 2),
where vk (k = λ ,λ + 1, ⋅ ⋅ ⋅ ,λ 2) is the number of jobs of processing time kδ 2L assigned
to that machine. The length of assignment −→v is defined as l(−→v) = ∑λ 2

k=λ (vk ⋅δ 2L).
Denote by F the set of all possible assignment vectors with length less than (1+2δ)L

, i.e., F = {−→v ∣ l(−→v) ≤ (1+ 2δ)L}. By the fact that the processing times of all jobs in
instance Î are at least δL and Lemma 1, each assignment in F contains at most λ + 2
jobs. Therefore ∣F ∣ ≤ λ 2λ+4 holds. Denote by ψi the set of all possible vectors that can
be allocated to machines with GoS level i (i = 1,2), i.e., ψi = {−→u ∈ F ∣ −→u ≤ ∑2

t=i
−→
nt }.

For every −→v ∈ F , we define ψ(i,−→v) = {−→u ∈ ψi ∣ l(−→u) ≤ l(−→v)}. For every vector
−→u ∈ ψ(i,−→v), let x

−→u
i be the numbers of machines with GoS level i that are assigned −→u

in ψ(i,−→v). For every −→v ∈ F , we construct an integer linear programming ILP(−→v) with
arbitrary objective function, and that the corresponding constraints are:

∑
−→u ∈ψ(1,−→v)

x
−→u
1 = k; (1)

∑
−→u ∈ψ(2,−→v)

x
−→u
2 = m− k; (2)

∑
−→u ∈ψ(1,−→v)

x
−→u
1
−→u + ∑

−→u ∈ψ(2,−→v)

x
−→u
2
−→u =

−→
n1 +

−→
n2 ; (3)

∑
−→u ∈ψ(2,−→v)

x
−→u
2
−→u ≤

−→
n2 ; (4)

x
−→u
i ∈ ℤ+∪{0} ∀−→u ∈ ψ

−→v
i ; i = 1,2 (5)

Here, the constraints (1) and (2) guarantee that each machine is assigned exactly one
vector (a set of jobs), and the constraint (3) guarantees that each job is used in exactly
once. The constraint (4) guarantees that the machines with GoS level 2 are assigned
jobs with GoS level 2. For every −→v ∈ F , the number of variables in the integer linear

Approximation Schemes for Scheduling on Parallel Machines with GoS Levels 55

programming is at most ∣ψ(1,−→v)∣+ ∣ψ(2,−→v)∣ ≤ 2∣F ∣ ≤ 2λ 2λ+4, and that the number of
constrains is at most 2+2(λ 2−λ +1)+ ∣ψ(1,−→v)∣+ ∣ψ(2,−→v)∣ ≤ 2λ 2−2λ +4+2λ 2λ+4.
Both values are constants, as λ is a fixed constant.

By utilizing Lenstra’s algorithm in [9] whose running time is exponential in the di-
mension of the program but polynomial in the logarithms of the coefficients, we can
decide whether the integer linear programming ILP (−→v) has a feasible solution in time
O(logO(1)n), where the hidden constant depends exponentially on λ . And since the inte-
ger linear programming ILP(−→v) can be constructed in O(n) time, we can find the opti-
mal value ÔPT = min{l(−→v)∣ ILP(−→v) has a feasible solution } of the instance Î in time
O(∣F ∣(logO(1)n+n)) = O(n). Hence, the following lemma holds.

Lemma 2. For any fixed integer λ , an optimal solution for the new instance Î =(M ,Ĵ L∪
J A) corresponding to the given instance I = (M ,J) of the problem P∣GoS2∣Cmax can
be computed in time O(n), where the hidden constant depends exponentially on λ .

Lemma 3. There exists a schedule for the instance I with maximum machine completion
time at most ÔPT +δL.

Our approximation scheme for the problem P∣GoS2∣Cmax can formulated as follows.
For any given instance I, we first compute a bound on OPT using LG-LPT algorithm [5] in
time O(n logn), and construct a corresponding instance Î in time O(n). Then, compute an
optimal solution for the instance Î in time O(n) by utilizing Lenstra’s algorithm. Finally,
we output a feasible solution for instance I as in Lemma 3. Let OUT be the value of output
solution, by Lemma 3, we have OUT ≤ ÔPT +δL. By Lemma 1, we have ÔPT ≤ (1+
δ)OPT +δL. Hence, we have OUT ≤ (1+δ)OPT +2δL≤ (1+5δ)OPT ≤ (1+ε)OPT ,
as L ≤ 2OPT and δ = 1

⌈ 5
ε ⌉

≤ ε
5 .

Hence, we achieve our main result as follows.

Theorem 1. The problem P∣GoS2∣Cmax possesses a PTAS with running time O(n logn),
where the hidden constant depends exponentially on 1

ε .

3 A new FPTAS for Pm∣GoS∣Cmax
Although there exists many FPTASs for the problem Pm∣GoS∣Cmax, only two of them

have running time O(n) [2, 6]. As the FPTASs with running time O(n) in [2, 6] are
designed for a more general problem, they are complex. In this section, we investigate the
special structure of the problem Pm∣GoS∣Cmax and design a simpler FPTAS with running
time O(n).

Assume that all the machines and jobs are sorted in nondecreasing order of their GoS
levels, thus we have g(M1)≤ g(M2)≤ ⋅⋅ ⋅ ≤ g(Mm) and g(J1)≤ g(J2)≤ ⋅⋅ ⋅ ≤ g(Jn). For
convenience, we denote by P = ∑n

j=1 p j the total processing time, and for each job Jk, we
define vk = max{i ∣ g(Mi)≤ g(Jk)}.

We first present a standard dynamic program, which can also be found in [13]. In
the dynamic program, we will store certain information for certain schedules for the
first k jobs (1 ≤ k ≤ n): Every such schedule is encoded by a m-dimensional vector
(P1,P2, . . . ,Pm), where Pi specifies the overall processing times of all jobs assigned to
machines Mi for i = 1,2, . . . ,m. The state space ψk consists of all m-dimensional vectors
for schedule for the first k job, where for k = 0, the state space ψ0 contains only one

56 The 8th International Symposium on Operations Research and Its Applications

element (0,0, . . . ,0). For k ≥ 1, every schedule (P1,P2, . . . ,Pm) in state space ψk−1 can
be extended in vk ways by placing job Jk to the machine Mi (1 ≤ i ≤ vk). This yields vk
schedules:

(P1,P2, . . . ,Pm)+ pkei; i = 1,2, . . . ,vk

where ei denotes the m-dimensional vector whose coordinates are 0 except for the ith
coordinate as 1. We put these vk schedules into the state space ψk. In the end, the optimal
objective value is

min{z ∣ ∃(P1,P2, . . . ,Pm) ∈ ψn, which satisfies max
1≤i≤m

{Pi} ≤ z}.

Here, the computational complexity of this dynamic progrmming formulation is clearly
O(nPm), which is a pseudo-polynomial time. As mentioned in [13], following the frame-
work of Woeginger [12], the problem Pm∣GoS∣Cmax has an FPTAS. However, the running
time is not linear. We will present a new FPTAS with running time O(n) by utilizing a
new method of handling small jobs.

As in [12], we iteratively thin out the state space of the dynamic program, and collapse
solutions that are close to each other, and then bring the size of the state space down to
polynomial size. The trimming parameter △ in our paper here is defined as △ = ε2P

4m2 ,
where ε > 0 and P = ∑n

j=1 p j.
Different from the definition of △-domination in [12], we call that a state s′ = (P′

1, P′
2,

. . ., P′
m) is △-dominated by the state s = (P1,P2, . . . ,Pm) if and only if

Pi −△≤ P′
i ≤ Pi +△, for each i = 1,2, . . . ,m (6)

For each state space ψk, if the state s′ ∈ ψk is dominated by the state s ∈ ψk, we remove
state s′ from ψk. Finally, we will get the trimmed state space ψ∗

k . Whenever we compute
a new state space ψ∗

k in the trimmed dynamic program, we start from the trimmed state
space ψ∗

k−1 instead of ψk−1 in the original dynamic program.
We can obtain the following results.

Lemma 4. ∣ ψ∗
k ∣=O(1), where ∣ ψ∗

k ∣ is the cardinality of the trimmed state space ψ∗
k and

m is fixed.

Lemma 5. For each state s′ = (P′
1,P

′
2, . . . ,P

′
m) in the original state space ψk, there is a state

s = (P1,P2, . . . ,Pm) in the trimmed state space ψ∗
k which satisfies Pi −k△≤ P′

i ≤ Pi +k△
(i = 1,2, . . . ,m).

We now present our FPTAS for the problem Pm∣GoS∣Cmax in the following structural
form:

Algorithm: FPTAS
Begin
Step 1 If (n ≤ 2m

ε) then
Step 1.1 Choose the schedule (S1,S2, . . . ,Sm) corresponding to the best state (P1, P2, . . .,

Pm) from the final trimmed state space ψ∗
n .

Step 2 If (n > 2m
ε) then

Step 2.1 Denote K = 2m
ε ;

Step 2.2 Choose the first K longest jobs denoted by L = {Ji1 ,Ji2 , . . . ,JiK};

Approximation Schemes for Scheduling on Parallel Machines with GoS Levels 57

Step 2.3 For the jobs in L, we compute the trimmed state space ψ∗
K in the preceding

discuss;
Step 2.4 For each state in ψ∗

K , we assign each job J j in J −L to the least-loaded machine
Mi with g(Mi)≤ g(J j) according the increasing order of the GoS level;

Step 2.5 Choose the schedule (S1,S2, . . . ,Sm) corresponding to the best solution from the
∣ ψ∗

K ∣ feasible solutions.
Step 3 Output the solution in either the step 1 or the step 2.
End of Algorithm FPTAS

Lemma 6. In Step 2 of the algorithm FPTAS, the processing time of any job in J −L is
at most ε⋅OPT

2 , where OPT denotes the objective value of the optimal solution.
Let (S∗1,S

∗
2, . . . ,S

∗
m) be an optimal schedule for the problem Pm∣GoS∣Cmax with a fixed

number of machines. We show our result in the following theorem.

Theorem 2. The algorithm FPTAS produces a solution for the problem Pm∣GoS∣Cmax in
which the maximum machine complete time is at most (1+ ε)OPT , and the computa-
tional complexity is linear, i.e., O(n), where the hidden constant depends exponentially
on m.

Proof. We prove the assertion in the following two different cases.
Case 1. n ≤ 2m

ε . For the state (P∗
1 ,P

∗
2 , . . . ,P

∗
m) corresponding to the optimal schedule

(S∗1,S
∗
2, . . . ,S

∗
m), by Lemma 5, there is a state s′ = (P′

1,P
′
2, . . . ,P

′
m) in the trimmed state

space ψ∗
n which satisfies

P′
i ≤ P∗

i +n△≤ P∗
i +

2m
ε

ε2P
4m2 ≤ P∗

i + εOPT, i = 1,2, . . . ,m

The last inequality comes from the fact that P ≤ m ⋅OPT . Since we choose the best state
(P1,P2, . . . ,Pm) from ψ∗

n , we obtain

max
1≤i≤m

{Pi} ≤ max
1≤i≤m

{P′
i } ≤ max

1≤i≤m
{P∗

i }+ εOPT ≤ (1+ ε) ⋅OPT

Case 2. n > 2m
ε . For the state (P∗L

1 ,P∗L
2 , . . . ,P∗L

m) corresponding to the subschedule
(S∗1 ∩L,S∗2 ∩L, . . . ,S∗m ∩L), by Lemma 5, there is a state (P′L

1 ,P′L
2 , . . . ,P′L

m) in the trimmed
state space ψ∗

K which satisfies

P
′L
i ≤ P∗L

i +K△= P∗L
i +

2m
ε

ε2P
4m2 ≤ P∗L

i +
ε
2

OPT, i = 1,2, . . . ,m

Consider the solution (P
′
1,P

′
2, . . . ,P

′
m) which is obtained by assigning the jobs in J −

L to the state (P
′L
1 ,P

′L
2 , . . . ,P

′L
m). Suppose that Mt is the machine with the maximum ma-

chine complete time and J j is the last job in J − L assigned to the machine Mt . We
notice that each job in J −L assigned before job J j must be assigned to one of the first
v j machines in any schedule, because we assign the jobs in J −L according the increas-
ing order of the GoS level. Let S = {Jk ∣ Jk ∈ J −L and Jk is assigned before J j}. Since
we choose the least-loaded machine Mt when we assign job J j, we obtain the following

58 The 8th International Symposium on Operations Research and Its Applications

result:

P′
t = P′

t − p j + p j ≤
∑

v j
i=1 P

′L
i + l(S)
v j

+
ε
2

OPT (7)

≤ ∑
v j
i=1(P

∗L
i + ε

2 OPT)+ l(S)
v j

+
ε
2

OPT (8)

=
∑

v j
i=1 P∗L

i + l(S)+ v jε
2 OPT

v j
+

ε
2

OPT (9)

≤ ∑
v j
i=1 P∗

i

v j
+ εOPT ≤ (1+ ε)OPT (10)

The inequality (7) comes from the fact that machine Mt is the least-loaded machine when
we assign the job J j, the inequality (8) comes from Lemma 5 and the last inequality comes
from the fact that average load is no more than OPT .

Since we choose the best schedule (S1,S2, . . . ,Sm) from the ∣ ψ∗
K ∣ feasible solutions,

we obtain
max

1≤i≤m
{Pi} ≤ max

1≤i≤m
{P′

i }= P′
t ≤ (1+ ε)OPT

Thus, from the results in the preceding both cases, we obtain the fact that the objective
value of the output solution (S1,S2, . . . ,Sm) is no more than (1+ ε)OPT .

It is easy to verify that the computational complexity in the case 1 is bounded by
(P
△)m = O(1), by the fact that m is fixed. And for the computational complexity in the

case 2, we can obtain the time-consuming: (1) the step 2.2 can be executed in O(mn
ε); (2)

by Lemma 4, the step 2.3 can be executed in O(m
ε); (3) the step 2.4 can be executed in

O(n). Therefore, the overall computational complexity of the algorithm FPTAS is totally
O(n), where ε > 0 and m are fixed numbers.

Hence, the theorem holds.

4 Conclusion
In this paper, we design a PTAS with running time O(n logn) for the problem

P∣GoS2∣Cmax which is a special case of the problem P∣GoS∣Cmax. An immediate prob-
lem is whether there is a PTAS with running time O(n logn) for the problem P∣GoS∣Cmax.
It is not clear whether the method in current paper can be extended to P∣GoS∣Cmax. This
may be a direction of the future work although the method does not seem extensible to
P∣GoS∣Cmax.

We also present a new simpler FPTAS with running time O(n) for the problem
Pm∣GoS∣Cmax. The technique of handling small jobs in our FPTAS has independent in-
terest and may be found other applications in the scheduling model under a grade of
service provision.

References
[1] N. Alon, Y. Azar, G.J. Woeginger, and T. Yadid. Approximation schemes for scheduling on

parallel machines. Journal of Scheduling, 1, 55-66, 1998.

Approximation Schemes for Scheduling on Parallel Machines with GoS Levels 59

[2] A. Fishkin, K. Jansen, and M. Mastrolilli. Grouping techniques for scheduling problems:
simpler and faster. Proceedings of the 9th Annual European Symposium on Algorithms, 206-
217, 2001.

[3] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization and approx-
imation in deterministic sequencing and scheduling: a survey, Annals of Discrete Mathemat-
ics, 5, 287-326, 1979.

[4] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling nonidentical
processors, Journal of the ACM, 23, 317-327, 1976.

[5] H.C. Hwang, S.Y. Chang, and K. Lee. Parallel machine scheduling under a grade of service
provision, Computers and Operations Research, 31, 2055-2061, 2004.

[6] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unrelated par-
allel machines. 31st Annual ACM Symposium on Theory of Computing (STOC), 408-417,
1999.

[7] M. Ji and T.C.E. Cheng. An FPTAS for parallel machine scheduling under a grade of service
provision to minimize makespan. Information Processing Letters, 108(4), 171-174, 2008.

[8] Y. Jiang. On line scheduling on parallel machines with two GoS levels. Journal of Combina-
torial Optimization, 16(1), 28-38, 2008.

[9] H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Oper-
ations Research, 8, 538-548, 1983.

[10] J.Y.-T. Leung and C.-L. Li. Scheduling with processing set restrictions: A survey. Interna-
tional Journal of Production Economics, 116(2), 251-262, 2008.

[11] J. Ou, J.Y.-T. Leung, and C.-L. Li. Scheduling parallel machines with inclusive processing set
restrictions. Naval Research Logistics, 55(4), 328-338, 2008.

[12] G.J. Woeginger. When does a dynamic programming formulation guarantee the existence of
a fully polynomial time approximation scheme (FPTAS)?, Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms (SODA), 820-829, 1999.

[13] G.J. Woeginger. A comment on parallel-machine scheduling under a grade of service provi-
sion to minimize makespan. Information Processing Letters, 109(7), 341-342, 2009.

[14] P. Zhou, Y. Jiang, and Y. He. Parallel machine scheduling problem with two GoS levels. Ap-
plied Mathematics: A Journal of Chinese Universities (Series A), 22(3), 275-284 (in Chinese),
2007.

60 The 8th International Symposium on Operations Research and Its Applications

