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Abstract  In Ref 1,Yang shows that some of the results obtained in Ref. 2 on E-convex 
programming are incorrect, in Ref 3,Chen introduce semi-E-convex functions to correct the 
main results in Ref.2, in Ref 4,Duca and Lupsa show that the results obtained in Ref. 2 
concerning the characterization of an E-convex function f in terms of its E-epigraph are 
incorrect. And give some characterizations of E-convex functions using two notion of 

epigraph ( )( fepiE and )( fepi ). In this note, some new properties of semi-E-convex 

functions are discussed, and new characterizations of semi-E-convex functions using a new 

epigraph of )( fepi E
and slack 2-convex set are proposed, more new results of semi- 

E-convex programming are given. 
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1 Introduction 
The convexity of functions is important in the discussion of optimization and 

variation inequalities, to weak the convexity of functions attracted more attention of 
researchers, see [1-8]. Youness introduced the concepts of E- convex set and 
E-convex function in Ref. 2. Chen introduced the definitions of semi-E-convex 
function and quasi-semi- E-convex function in Ref. 3. For convenience, we recall 
these definitions. And give other related concepts, which is required in the later 
discussions. 

Definition 1.1[2]. Let nn RRE :  be a function. A subset nRM   is said 
to be E-convex if 

MytExEt  )()()1( , 

for all Myx , and all ]1,0[t . 

Definition 1.2[2]. Let M be a nonempty subset of nR and let nn RRE :  be a 
function. A function RMf : is said to be E-convex on M if M is E-convex and 
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))()()1(( ytExEtf   ))(())(()1( yEtfxEft  , 

for all Myx , and all ]1,0[t .  

Definition 1.3[3].. A function RMf : is said to be semi- E-convex on a set
nRM  iff there is a mapping nn RRE : such that M is a E-convex set and 

))()()1(( ytExEtf   ))()()1( ytfxft  , 

for each Myx , and all ]1,0[t . 

Definition 1.4[3]. A function RMf : is said to be quasi-semi- E-convex on a 

set nRM  iff there is a mapping nn RRE : such that M is a E-convex set and 
))()()1(( ytExEtf    )(),(max yfxf  

for each Myx , and ]1,0[t   

Definition 1.5. A function RMf : is said to be strictly quasi-semi- 

E-convex on a set nRM  iff there is a mapping nn RRE : such that M is a 
E-convex set and for each Myx , with )()( yfxf  we have 

))()()1(( ytExEtf    )(),(max yfxf , )1,0(t . 

Definition 1.6. A function RMf : is said to be strongly quasi-semi- 

E-convex on a set nRM  iff there is a mapping nn RRE : such that M is a 
E-convex set and for each Myx , with yx  we have 

))()()1(( ytExEtf    )(),(max yfxf , )1,0(t . 

Definition 1.7[3]. The function RMf : is said to be pseudo-semi- E-convex 

on E-convex set nRM  , if there exists a strictly positive function 

RRRb nn : such that 
)()( yfxf    ))()1()(( yEtxtEf ),()1()( yxbttyf   

for all Myx , , and ]1,0[t . 

In Ref. 2, the concepts of E-convex sets and E-convex functions are given, its 
properties are proposed, and the related results are used in the study of E-convex 
programming. Unfortunately, some of the results obtained in Ref. 2 are incorrect. 
Indeed, in Ref. 1 and Ref. 3, Yang and Chen shows that some of the results obtained 
in Ref. 2 on E-convex programming are incorrect respectively, but does not prove 
that the result which makes the connection between an E-convex function and its 
E-epigraph is incorrect. In Ref. 4, Duca and Lupsa show that the result obtained in 
Ref. 2 on the characterization of an E-convex function f in terms of its E-epigraph(E − 
e(f )) is not true. And give some characterizations of E-convex function using notion 

of )( fepiE and epi )( f . In this note, we discuss more new properties about 

semi-E-convex functions and give also some characterizations of semi-E-convex 

function using a new notion of epigraph (i.e. )( fepi E ), which is first introduced in 

the note. We propose some new results of semi-E-convex programming. 
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2 Some Properties of semi-E-Convex Functions 
In this section, some relations between different notions about semi-E-convex 

functions and properties of semi-E-convex functions are given. And the 
characterizations of semi-E-convex functions in terms of a new notion of epigraph,

)( fepi E is obtained. 

If M is a nonempty subset of nR and MME : and RMf : are two 

functions, we consider the following three sets: 

)( feE  = }))((),{( axEfRMax  , 

epi )( f = })(),{( axfRMax  , 

)( fepiE = })()(),{( azfRMEaz  , 

)( fepi E = })()(),{( axfRMEaEx  , 

The four sets )( feE  ,epi(f ), )( fepiE and )( fepi E  are not equal. 

Obviously, we have )( fepiE  )( fepi . 

The following theorem proposes relations among different notions about 
semi-E-convex functions Theorem 2.1. A strongly quasi-semi- E-convex function 

on a set nRM  is also a strictly quasi-semi- E-convex function on the set M . 

Theorem 2.2. Let M be a nonempty subset of nR and let RMf : and 
nn RRE : be two functions. If M is an E-convex set and f is a semi-E-convex 

function on M, then )( fepi  )( feE  . 

Theorem 2.3. Let M be a nonempty subset of nR and let RMf : and 
nn RRE : be two functions. If )( fepi  )( feE  and f is E-convex function 

on M. Then f is a semi-E-convex function on M.  
Proof. For ,x y M and [0,1]t , ( , ( )), ( , ( ))x f x y f y  ( )epi f ,thus 

))(,()),(,( yfyxfx  )( feE  , 

which implies that )()( xfExf  , )()( yfEyf  as f is E-convex function on M, 

we have 
))()()1(( ytExEtf   ))(())(()1( yEtfxEft   

     )()()1( ytfxft  . 

Theorem 2.4. Let M be a nonempty subset of nR and let RMf : and 
nn RRE : be two functions. If )( fepi  )( feE  , and f is convex on

)(ME . Then f is a semi-E-convex function on M. 

Proof. Be similar to the proof of Theorem 2.3.  

Theorem 2.5. Let M be a nonempty subset of nR and let RMf : and 
nn RRE : be two functions. If )( fepi  )( feE  , and )( fepiE is convex, 
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then f is a semi-E-convex function on M. 
Proof. For Myx , and ]1,0[t , ))(,()),(,( yfyxfx  )( fepi  

From the condition )( fepi  )( feE  ,we have ))(,()),(,( yfyxfx 
)( feE  , thus  

)()( xfExf  , )()( yfEyf  , 

This implies that 

))(,()),(,( yfEyxfEx  )( fepiE . 

As )( fepiE is convex, we have  

)))()()1(,)1(( ytfxfttEyExt   )( fepiE . 

Then we have 
))()()1(( ytExEtf   ))(())(()1( yEtfxEft   

      )()()1( ytfxft  . 

Definition 2.1. Let nn RRE :  be a mapping, M be a nonempty E-convex 

subset of nR .A function  RMf : is said to a logarithmic E -convex on 

E-convex set M , if ))(ln( xf is E -convex on E-convex set M , i.e. 

))()()1(( ytExEtf   tt EyfExf )()( 1 , ]1,0[,,  tMyx  

Definition 2.2. Let nn RRE :  be a mapping, M be a nonempty E-convex 

subset of nR .A function  RMf : is said to a logarithmic semi- E -convex on 

E-convex set M ,if ))(ln( xf is semi- E -convex on E-convex set M ,i.e. 

))()()1(( ytExEtf   tt yfxf )()( 1 , ]1,0[,,  tMyx  

Theorem 2.6. Let M be a nonempty subset of nR ,for a mapping nn RRE : , 

and a function    RRf n : ,then f be a logarithmic E -convex on E-convex 

set nRM   f be E -convex on M  f be quasi- E -convex on M (i.e.

))()()1(( ytExEtf    )(),(max EyfExf ). 

Proof. For ]1,0[t , and Myx , , we have 

))()()1(( ytExEtf   tt EyfExf )()( 1  

                        ))(())(()1( yEtfxEft   

                     )(),(max EyfExf . 

Theorem 2.7. Let M be a nonempty subset of nR , nn RRE : be function, 

and let RRf n : be logarithmic semi- E -convex on E-convex set nRM  
f be semi- E -convex on M  f be quasi-semi- E -convex on M . 

Proof. For ]1,0[t , and Myx , , we have 

))()()1(( ytExEtf   tt yfxf )()( 1  

                    )()()1( ytfxft   
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                     )(),(max yfxf . 

Definition 2.3[7]. See Ref. 3 or Ref. 4. Let A and B be two subsets of nR . We say 
that A is slack 2-convex with respect to B if, for every BAyx , and every 

]1,0[t with the property that Btyxt  )1( , we have Atyxt  )1( . 

The following theorem gives a sufficient condition for f to be a semi-E-convex 

function using the set )( fepi E . 

Theorem 2.8. Let M be a nonempty subset of nR and let RMf : and 
nn RRE : be two functions. If M is an E-convex set, )(ME is a convex set, and

)()( xfExf  , Mx )( fepi E  is a slack 2-convex set with respect to

RME )( , then f is a semi-E-convex function on M. 

Proof. Let Myx , and ]1,0[t . Then, ))(,( xfEx , ))(,( yfEy 

))(( RME   )( fepi E . 

Since )(ME  is a convex set, we have )()1( MEtEyExt  ; hence, 

 ))()()1(,)1(( ytfxfttEyExt ))(( RME  . 

Since ( )Eepi f  is a slack 2-convex set with respect to ( ( ) )E M R , then,  

 ))()()1(,)1(( ytfxfttEyExt )( fepi E . 

It follows that there exist z M , such that, (1 ) ( ) ( ) ( )t E x tE y E z   , and 

))()()1()( ytfxftzf  , 

Hence,    ))()()1(( ytExEtf   ))()()1()( ytfxftzf   

Then, f f is semi-E-convex function on M . 

3 Some Results of Semi-E-Convex Programming 
Let us consider the following programming problem: 

)(P   Min )(xf ,  

s.t.  mixgRxMx i
n ,,2,1,0)(:  , 

where RRf n : and RRg n
i : , mi ,,2,1   are function on nR .we have 

the following results. 

Theorem 3.1. If Mx 0 is a fixed point of the mapping nn RRE : (i.e.

00 Exx  ), and 0x is a local minimum of the problem )(P on an E-convex set M , 

and RRf n : is semi-E-convex on the set M , then 0x is global minimum of 

problem )(P on M . 

Proof. Let Mx 0 be a nonglobal minimum of the problem (P) on M, then, 

there is My such that )()( 0xfyf  , since function RRf n :  is 
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semi-E-convex on the set M , and Mx 0 is a fixed point of the mapping E ,it 

implies that 
))()()1(())()1(( 00 ytExEtfytExtf  

)()()()1( 00 xfytfxft  , 

For any small )1,0(t , which contradicts the local optimality of 0x for 

problem )(P .  

Hence, 0x is global minimum of problem )(P on M . 

Theorem 3.2. If Mx 0 is a fixed point of the mapping nn RRE : (i.e.

00 Exx  ),and 0x is a local minimum of the problem )(P on an E-convex set M , 

and RRf n : is pseudo-semi-E-convex on the set M , then 0x is global 

minimum of problem )(P on M . 

Proof. Let Mx 0 be a nonglobal minimum of the problem (P) on M, then, 

there is My such that )()( 0xfyf  , since function RRf n :  is s 

pseudo-emi-E-convex on the set M and Mx 0  is a fixed point of the mapping

E ,it implies that 
))()1()(())1()(( 00 xEtytEfxtytEf  

)(),()1()( 000 xfxybttxf  , 

For any small )1,0(t , which contradicts the local optimality of 0x for 

problem )(P . Hence, 0x is global minimum of problem )(P on M . 

Theorem 3.3. Assume function RRf n : is a strongly quasi-semi- E-convex 

on a set nRM  , then the global optimal solutions of problem (P) is unique. 

Proof. Let Mxx 21, be two different global optimal solutions of problem (P), 

then, )()( 21 xfxf  . Since M is E -convex and f is strongly 

quasi-semi-E-convex, then 
))()()1(( 21 xtExEtf    )(),(max 21 xfxf = )( 1xf , )1,0(t , 

This contradicts the optimality of 1x for problem (P). Then, the global optimal 

solution of the problem (P) is unique. 

Theorem 3.4. Let M be a nonempty subset of nR , nn RRE : be function, 

and let RRf n : be pseudo-semi- E -convex on E-convex set nRM  , Mu
be fixed point of map E (i.e. Euu  ) and 

0,)(  EuEvEuf , Mv ,                        (1) 

Then u is a minimum of function f on M.. 
Proof. Let Mu be a non minimum of function f on M, then, there is 
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Mv such that )()( ufvf  , since f is pseudo-semi-E-convex on E-convex 

set M , we have 
 )))()(()(( uEvEtuEf ))()1()(( uEtvtEf   

 ),()1())((),()1()( uvbttuEfuvbttuf  , 

For all )1,0(t , and 

t

uEfuEvEtuEf ))(()))()(()(( 
),()1( uvbt  . 

Letting 0t , we have 

0),()()(),((  uvbuEvEuEf , 

Which contradicts the condition (1).Hence u is a minimum of function f on M.. 

References 
[1] YANG, X.M., On E-convex sets, E-convex functions, and E-convex programming, 

Journal of Optimization Theory and Applications, Vol. 109, pp. 699–704, 2001. 
[2] YOUNESS, E.A., E-convex sets, E-convex functions, and E-convex programming, 

Journal of Optimization Theory and Applications, Vol. 102, pp. 439–450, 1999. 
[3] CHEN,X.S., Some properties of semi-E-convex functions , Journal of Mathematical 

Analysis and Applications. Vol 275,pp 251–262, 2002. 
[4] DUCA,D. I., and LUPSA¸ L.,On the E-epigraph of an E-convex function , Journal of 

Optimization Theory and Applications,Vol.129, No. 2, pp. 341–348, 2006. 
[5] NOOR,M.A., Fuzzy preinvex functions, Fuzzy Sets and Systems 64 (1994) 95–104. 
[6] ABOU-TAIR, I.A.,SULAIMAN, W.T., Inequalities via convex functions, Internat. J. 

Math. Math. Sci. Vol. 22 543–546. 1999 
[7] LUPSA, L., Slack convexity with respect to a given set, Itinerant Seminar on 

Functional Equations, Approximation, and Convexity, Babes-Bolyai University 
Publishing House, Cluj-Napoca, Romania, pp. 107–114, 1985, (in Romanian).  
 

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming 39




