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Abstract In this paper some new results on the acyclic-edge coloring , f -edge coloring, g-edge
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1 Introduction
The edge coloring problem has interesting real life applications in optimization and

network design, such as file transfers in computer networks [5] . For the file transfer
problem in computer networks, each computer x has a limited number f (x) of communi-
cation ports. For each pair of computers there are a number of files which are transferred
between the pair of computers. In such a situation the problem is how to schedule the file
transfers so as to minimize the total time for the overall transfer process. The file transfer
problem in which each file has the same length can be formulated as an edge coloring [5].

Let G be a graph. We denote by V (G) the set of vertices of a graph G and by E(G)
its set of edges. For a vertex v ∈V (G), N(v) denotes the set of vertices adjacent to v, and
d(v) = ∣N(v)∣ denotes the degree of v. We use ∆(G) and δ (G) to denote the maximum de-
gree and the minimum degree of G. Throughout this paper, We only consider the graphs,
which allow multiple edges but no loops. If G has no multiple edges, G is called a simple
graph. Given two vertices u,v ∈V (G), let E(uv) be the set of edges joining u and v in G.
The multiplicity µ(uv) of edge uv is the size of E(uv). Set µ(v) = max{µ(uv) : u ∈ V},
µ(G) =max{µ(v) : v∈V}, which are called the multiplicity of vertex v and the multiplic-
ity of graph G, respectively. An edge-coloring of G is an assignment of colors to the edges
of G. Associate positive integer 1,2, . . . with colors, and we call C a k-edge-coloring of G
if C: E → {1,2, . . . ,k}. Let iC(v) denote the number of edges of G incident with vertex v
that receive color i by the coloring C. For simplification, we write i(v) = iC(v) if there is
no obscurity.

Let g and f be two integer-valued functions defined on V (G) such that 0≤ g(v)≤ f (v)
for each vertex v of V (G). A (g, f )-coloring of graph G is a edge coloring of G such that
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each color appears at each vertex v at least g(v) and at most f (v) times. The minimum
number of colors used by a (g, f )-coloring of G is denoted by χ ′

g f (G) which is called the
(g, f )-chromatic index of G. The maximum number of colors used by a (g, f )-coloring
of G is denoted by χ ′

g f (G) which is called the upper (g, f )-chromatic index of G. The
(g, f )-coloring is a generalization of edge-coloring and edge cover coloring, which arises
in many applications, such as the network design, the file transfer problem on computer
networks and so on [24, 25, 26]. The (g, f )-chromatic index was first posed in [25]. Liu
gave the concept of the upper (g, f )-chromatic index. A proper edge-coloring is a (g, f )-
coloring for the case g(v) = 0 and f (v) = 1 for each vertex v ∈V (G). The edge coloring
problem was posed in 1880 in relation with the well-known four-color conjecture. In
1964, Vizing [29] proved the famous Vizing’s theorem: ∆(G) ≤ χ ′

(G) ≤ ∆(G)+ 1 for
any simple graph G where χ ′

(G) is the chromatic index of G. An proper edge coloring is
called acyclic if there is no 2-colored cycle in G. In other words, if the union of any two
color classes induces a subgraph of G which is a forest. The acyclic edge chromatic index
of G, denoted by a′(G), is the least number of colors in an acyclic edge coloring of G. The
acyclic edge coloring problem was posed by Alon et al. [1] and they proved that a′(G)≤
64∆(G) by probabilistic arguments. An f -coloring of a graph G is a (g, f )-coloring for
the case g(v) = 0 for each vertex v ∈ V (G). The minimum number of colors needed to
an f -coloring of G is called the f -chromatic index of G and is denoted by χ ′

f (G). The
f -coloring of a graph G was considered in [7]. Hakimi and Kariv [7] studied f -colorings
of graphs and obtained many interesting results, most of which are the generalizations of
the classical results on proper edge-coloring. An edge cover coloring is a (g, f )-coloring
for the case g(v) = 1 and f (v)≥ d(v) for each vertex v ∈V (G). The edge cover chromatic
index of G, denoted by χ ′

c(G), is the maximum number of colors in an edge cover coloring
of G. In 1974, Gupta [6] firstly studied the edge cover coloring and got the famous
Gupta’s theorem: δ (G)− 1 ≤ χ ′

c(G) ≤ δ (G) for any simple graph G. A g-edge cover
coloring is a (g, f )-coloring for the case f (v) ≥ d(v) for each vertex v ∈ V (G). The g-
cover chromatic index of G, denoted by χ ′

gc(G), is the maximum number of colors in
a g-edge cover coloring of G. There are many interesting problems about g-edge cover
coloring to consider. In this paper, some new results on acyclic-edge coloring, f -edge
coloring, the g-edge cover coloring, (g, f )-coloring and equitable edge-coloring of graphs
are introduced. In particular, some new results related to the above colorings obtained by
us are given. Some new problems and conjectures are presented.

2 Acyclic Edge Coloring
We have known that a proper edge coloring of a graph G is called acyclic if there is

no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a′(G),
is the least number of colors in an acyclic edge coloring of G. Acyclic edge coloring
was introduced by Alon et al. [1] and they proved that a′(G) ≤ 64∆(G) by probabilistic
arguments. Molloy and Reed [21] showed that a′(G)≤ 16∆(G) using the same proof. In
2001, Alon, Sudakov and Zaks [2] gave the following conjecture.
Conjecture 2.1. a′(G)≤ ∆(G)+2 for all graphs G.

It is trivial if ∆(G) ≤ 2. Burnstein showed that a′(G) ≤ 5 if ∆(G) = 3 in [4]. This
conjecture was also proved to be true for almost all ∆(G)-regular graphs, and all ∆(G)-
regular graphs G, whose girth is at least c∆(G) log∆(G) for some constant c [2]. Recently,
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Hou et al. considered the acyclic edge coloring of planar graphs and got many interesting
results.

Theorem 1. [13] If G is a planar graph, then a′(G)≤ max{2∆(G)−2,∆(G)+22}.

Theorem 2. [13] If G is a planar graph with girth g(G)≥ 5, then a′(G)≤ ∆(G)+2.

Theorem 3. [13] If G is a planar graph with girth g(G)≥ 7, then a′(G)≤ ∆(G)+1.

Theorem 4. [13] If G is a planar graph with girth g(G) ≥ 16 and ∆(G) ≥ 3, then
a′(G) = ∆(G).

Theorem 5. [12] Let G be a planar graph with girth g(G). If (1) g(G) ≥ 6, or (2)
∆(G)≥ 11 and g(G)≥ 5, then a′(G)≤ ∆(G)+1.

Theorem 6. [12] Let G be a planar graph with girth g(G). If (1) ∆(G)≥ 4 and g(G)≥
16, or (2) ∆(G) ≥ 5 and g(G) ≥ 10, or (3) ∆(G) ≥ 6 and g(G) ≥ 8, or (4) ∆(G) ≥ 12
and g(G)≥ 7, then a′(G) = ∆(G).

Theorem 7. [12] If G is a planar graph without 4-cycles and 5-cycles, then a′(G) ≤
∆(G)+2.

Theorem 8. [12] If G is a planar graph without 4-cycles and 6-cycles, then a′(G) ≤
∆(G)+2

Theorem 9. [13] If G is a series-parallel graph, then a′(G)≤ ∆(G)+1.

Other results on acyclic edge colorings can be found in [2], [4] and [14]. We present
the following problems.
Problem 2.1. Find the the sufficient conditions for a graph G to have a′(G) = χ ′(G) ?
Problem 2.2. Find acyclic edge chromatic numbers of graphs embedded in a surface.
Problem 2.3. Find the relationship between a′(G) and χ ′(G) for a graph.

3 f-Coloring
Let G be a graph and f be a function which assigns a positive integer f (v) to each

vertex v ∈V (G). An f -coloring of G is an edge coloring of G such that each vertex v has
at most f (v) edges colored with the same color. The minimum number of colors needed
to f -color G is called the f -chromatic index of G, and denoted by χ ′

f (G). If f (v) = 1 for
all v ∈V (G), the f -coloring problem is reduced to the proper edge-coloring problem. In
1986 Hakimi and Kariv obtained the following result.

Theorem 10. [7] Let G be a graph. Then

∆ f (G)≤ χ ′
f (G)≤ max

v∈V (G)
{⌈d(v)+µ(v)

f (v)
⌉}.

Theorem 11. [7] Let G be a simple graph. Then

∆ f (G)≤ χ ′
f (G)≤ max

v∈V (G)
{⌈d(v)+1

f (v)
⌉} ≤ ∆ f (G)+1.
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We say that a graph G is of f -class 1 if χ ′
f (G) = ∆ f (G), and of f -class 2 otherwise.

Let V ∗
0 (G) = {v ∈ V (G) : d(v)

f (v) = ∆ f (G)}. The f -core of a graph G is the subgraph of
G induced by the vertices of V ∗

0 (G) and is denoted by G∆ f . We call a graph H edge-
orderable, if the edges of H can be ordered e1,e2, . . . , eε(H) in such a way that, for every
j, 1 ≤ j ≤ ε(H), edge e j has an end vertex v j such that, at every vertex u ∈ NH(v j), there
is an edge ei with i ≥ j. A graph G is ∆ f (G)-peelable, if all the vertices of G can be
iteratively peeled off using the following peeling operation: Peel off a vertex v, which
has at most one remaining neighbor of f -ratio ∆ f (G), where the f -ratio of a vertex v is
d(v)/ f (v).

X. Zhang and G. Liu [39, 41, 42] gave a series of sufficient conditions for a simple
graph G to be of f -class 1 based on the f -core of G.

Theorem 12. [37] Let G be a simple graph. If V ∗
0 (G) = /0, then G is of f -class 1.

Theorem 13. [38] Let G be a simple graph. If G∆ f is a forest, then G is of f -class 1.

Theorem 14. [39] Let G be a simple graph. If G∆ f is edge-orderable, then G is of f -class
1.

Theorem 15. [39] Let G be a simple graph. If G is ∆ f (G)-peelable, then G is of f -class
1.

Note that Theorem 3.6 is strictly stronger than each of Theorem 3.3- 3.5. Given a
partial edge coloring of graph G, we call a connected subgraph H of G an obstruction to
a partial f -coloring, if ε(H) is odd and dH(v) = 2 f (v) for each v ∈ V (H). A graph G is
called an f -regular graph if d(v) = ∆ f (G) f (v) for all vertices v ∈V (G).

Theorem 16. [41] Let G be a graph. If there is no obstruction in G, then χ ′
f (G) = ∆ f (G).

Theorem 17. [41] Let G be a graph with m edges. Then G is of f -class 2 if m >

∆ f (G)⌊ f (V (G))
2 ⌋.

Theorem 18. [41] Let G be a graph with f (V (G)) odd. If ∑
v∈V (G)

(∆ f (G) f (v)−d(v))<

∆ f (G), then G is of f -class 2.

Theorem 19. [38]If G is an f -regular graph with f (V (G)) odd, then G is of f -class 2.

Zhang and Liu [40] completely solved the classification problem on f -colorings for
complete graphs and obtained the following results.

Theorem 20. [40] Let G be a complete graph Kn. If k and n are odd integers, f (v) = k
and k ∣ d(v) for all v ∈V (G), then G is of f -class 2. Otherwise, G is of f -class 1.

A simple graph G is called f -critical if G is of f -class 2 and χ ′
f (G− e) < χ ′

f (G) for
every edge e ∈ E(G). Zhang and Liu studied the properties of f -critical graphs. Vizing’s
Adjacency Lemma [30] can be derived from Theorem 3.13 when f (v) = 1 for all v ∈
V (G).

Theorem 21. [44] If G is an f -critical graph and u, v are adjacent vertices of G, then
d(u)+d(v)≥ ( f (u)+ f (v)−1)∆ f (G)+2.
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Theorem 22. [44] Let G be an f -critical graph and u,w be adjacent vertices of G. Then
w is adjacent to at least f (w)( f (u)∆ f (G)−d(u)+1) vertices of f -ratio ∆ f (G) different
from u.

In the following we define a new f -coloring with some constraints. A super f -coloring
of G is a f -coloring with the property that parallel edges receive distinct colors. Let χ ′′

f (G)

denote the minimum positive integer k for which a super f -coloring of G exists. χ ′′
f (G)

is called the super f -chromatic index of G. Super f -coloring is a generalization of f -
coloring. A super f -coloring is a proper edge-coloring when f (v) = 1 for all v ∈ V (G).
Now we present the following Conjecture.
Conjecture 3.1. Let G be a graph. If 1≤ f (v)≤⌊(d(v)−µ(v))/µ(G)⌋ for each v∈V (G),
then

χ
′′
f (G)≤ max

v∈V (G)
{⌈d(v)+µ(v)

f (v)
⌉}

Conjecture 3.2. If χ ′′
f (G) exists and d(v)(mod f (v))≥ µ(v) for each v ∈V , then

χ
′′
f (G) = χ

′
f (G)

Conjecture 3.3. Let G be a graph. Then there exists a supper f -coloring if and only if
χ ′

f (G)≥ µ(G). Furthermore, if there exists a supper f -coloring, then χ ′′
f (G) = χ ′

f (G).

4 g-Edge Cover Coloring
Let us recall that a g-edge cover coloring is a edge coloring of G such that each color

appears at each vertex v at least g(v) times.. The g-cover chromatic index of G, denoted
by χ ′

gc(G), is the maximum number of colors in a g-edge cover coloring of G. An edge
cover coloring is a g-edge cover coloring where g(v) = 1 for each vertex v ∈ V (G). The
edge cover chromatic index of G, denoted by χ ′

c(G), is the maximum number of colors in
an edge cover coloring of G. In 1974, Gupta gave the following result in [6].

Theorem 23. (Gupta’s Theorem [6]) For any graph G,

min{d(v)−µ(v) : v ∈V} ≤ χ
′
c(G)≤ δ .

Song and Liu generalized the edge cover coloring to g-edge cover coloring in [27] and
determined the g-edge cover chromatic index of some kinds of graphs and gave a lower
bound of the g-edge cover chromatic index.

Set δg(G) = min{⌊dG(v)/g(v)⌋ : v ∈V (G)}. Let E(i) be the set of edges receive color
i in an edge-coloring C of G.

Theorem 24. [27] Let G be a bipartite graph. Then χ ′
gc(G) = δg(G). Furthermore if

χ ′
gc(G) = k ≥ 2, there exists an g-edge cover-coloring C of G for which ∣∣E(i)∣−∣E( j)∣∣ ≤

1 for i and j ∈ {1,2, . . . ,k} and ∣iC(v)− jC(v)∣ ≤ 1 for all v ∈V , i and j ∈ {1,2, . . . ,k}.

Theorem 25. [27] Let G be a graph. If g(v) is positive and even for all v ∈V , then

χ
′
gc(G) = δg(G).
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Theorem 26. [27] Let G be a graph. Let 1 ≤ g(v)≤ d(v) for all v ∈V . Then

χ
′
gc(G)≥ min

v∈V
{⌊(d(v)−µ(v))/g(v)⌋}.

Set δ ′
g = minv∈V{⌊(d(v)−1)/g(v)⌋}. Xu obtained the following result in [35].

Theorem 27. [35] Let G be a graph. Let 1 ≤ g(v)≤ d(v) for all v ∈V and 1 ≤ δ ′
g ≤ 4.

Then χ ′
gc(G)≥ δ ′

g.

Other results on g-edge cover colorings can be found in [19]. We say that a graph G
is of gc-class 1 if χ ′

gc(G) = δ ′
g, and of gc-class 2 otherwise. A simple graph G is called

gc-critical if G is of gc-class 2 and χ ′
gc(G+ e)> χ ′

gc(G) for every edge e which is not in
E(G). Now we present the following Problems.
Problem 4.1. Find the sufficient conditions for a graph G to be of gc-class 1 (of gc-class
2).
Problem 4.2. Study the properties of graphs which are gc-critical.

5 Other Edge Coloring with Constraints
In this section we consider problems on the (g, f )-coloring and equitable edge-coloring

of graphs. A (g, f )-coloring of graph G is a edge coloring of G such that each color ap-
pears at each vertex v at least g(v) and at most f (v) times. The minimum number of
colors used by a (g, f )-coloring of G is denoted by χ ′

g f (G) which is called the (g, f )-
chromatic index of G. The maximum number of colors used by a (g, f )-coloring of G is
denoted by χ ′

g f (G) which is called the upper (g, f )-chromatic index of G. A (g, f )-
factor of G is a spanning subgraph H of G satisfying g(v) ≤ dH(v) ≤ f (v) for each
v ∈ V (G). If a graph G itself is a (g, f )-factor, then G is called a (g, f )-graph. Set
∆ f (G) = max{⌈dG(v)/ f (v)⌉ : v ∈ V (G)}. A (g, f )-factorization of a graph G is a par-
tition {F1,F2, ...,Fm} of E(G) such that Fi is a (g, f )-factor for 1 ≤ i ≤ m. Clearly, a graph
G has a (g, f )-coloring if and only if it has a (g, f )-factorization. We have the following
basic results for (g, f )-coloring.

Theorem 28. [17] Let G be a bipartite graph, then G has a (g, f )-coloring if and only if
G is an (mg,m f )-graph for some positive integer m.

Theorem 29. [32] Let G be a bipartite graph, then G has a (g, f )-coloring if and only if
∆ f (G)≤ δg(G). And if G has a (g, f )-coloring, then

χ
′
g f (G) = ∆ f (G), χ ′

g f (G) = δg(G).

Theorem 30. [32] Let G be a graph and let g and f be nonnegative integer-valued
functions defined on V (G) such that g(v) ≤ f (v) for all v ∈ V (G). If G has a (g, f )-
coloring, then

χ
′
f (G)≤ χ

′
g f (G)≤ χ ′

g f (G)≤ χ
′
gc(G).

Theorem 31. [32] Let G be a simple graph. If χ ′
f (G) = maxv∈V{⌈(d(v)+ 1)/ f (v)⌉},

χ ′
gc(G) = minv∈V{⌊(d(v)−1)/g(v)⌋} and χ ′

gc(G)≥ χ ′
f (G). Then G has a (g, f )-coloring

and χ ′
g f (G) = χ ′

f (G), χ ′
g f (G) = χ ′

gc(G).
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Other results on the (g, f )-coloring can be found in [19]. Now we consider the
equitable coloring of graphs. An edge-coloring C of G with k colors is equitable if
∣i(v)− j(v)∣ ≤ 1, where 1 ≤ i < j ≤ k for any v ∈ V (G). Define Vt(G) = {v ∈ V (G) :
t ∣ d(v)}, where t is a positive integer. Call the subgraph of G induced by Vt(G) the t-core
of G. Hilton and de Werra studied the equitable edge-coloring problem of simple graphs
in [11]. The following theorem is one of the main results in [11].

Theorem 32. [11] Let G be a simple graph and let k ≥ 2. If k ∕ ∣d(v) for all v ∈ V (G),
then G has an equitable edge-coloring with k colors.

If k = ∆(G)+1, then Theorem 32 reduces to Vizing’s theorem of simple graphs [29].
If k = δ (G)−1, then Theorem 32 implies Gupta’s theorem of simple graphs [6]. Xu and
Liu discussed equitable edge-coloring of multigraphs and present the following theorem.

Theorem 33. [34] Let G be a graph and k ≥ 2. If µ(v)≤ d(v)(modk)≤ k−µ(v) for all
v ∈V (G), then G has an equitable edge-coloring with k colors.

Let M(v) denote the set of the colors each of which appears at most f (v)−1 times at
vertex v. It is very likely that the above theorem can be strengthened as follows, which
was made by Hilton [10] in 2005.
Conjecture 5.1. Let G be a simple graph and let k ≥ 2. If the k-core of G is a forest, then
G has an equitable edge-coloring with k colors.

Recently, this conjecture has been proved by X. Zhang and G. Liu by the following
theorem.

Theorem 34. [43] Let G be a simple graph and let k ≥ 2. Let f (v) = ⌈ d(v)
k ⌉ for each

v ∈V (G). Let C = {c1,c2, . . . ,ck}. If the edges of G can be f -colored with k colors of C in
the order e1,e2, . . . ,eε(G) in such a way that, for every j (1 ≤ j ≤ ε(G)), when f -coloring
the jth edge e j = w jv j, there are M(v) ∕= /0 for all v ∈ NG(w j) or for all v ∈ NG(v j), then
G has an equitable edge-coloring with k colors.

Finally, we present some problems for further research as follows.
Problem 6.1. Is χ ′

gc(G) ≥ χ ′
f (G) a necessary and sufficient condition for a graph G to

have a (g, f )-coloring?

Problem 6.2. If G has a (g, f )-coloring, do χ ′
g f (G) = χ ′

f (G) and χ ′
g f (G) = χ ′

gc(G) hold?
Problem 6.3. Find the relationship between the equitable edge-coloring and the (g, f )-
coloring of a graph.
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