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Abstract

Community structure detection is one of the most in-
teresting issues in the study of social networks. Howev-
er, there are seldom polynomial time algorithms which
is able to uncover community structure accurately. In-
spired by ideas of famous Modularity optimization, in
this paper, we proposed a novel type of k-strength re-
lationship which naturally represents the coupling dis-
tance between two nodes. Community structure detec-
tion algorithm is presented using a generalized Modu-
larity measure based on the k-strength matrix. To ob-
tain the optimal number of communities, we then pro-
pose a new parameter-free framework using the eigen-
value gap of the specific transition matrix. Finally, we
apply our algorithm both on artificial and real network-
s. Theoretical analysis and experiments show that the
algorithm is able to uncover communities fast and ac-
curately, which can be easily applied on large-scale real
networks.

1 Introduction

Community structure detection [1–3] is a main focus of
complex network studies and has attracted a great deal
of attention from various scientific fields. Intuitively,
community refers to a group of nodes in the network
that are more densely connected internally than with
the rest of the network. The studies for community
detection are potentially useful in real social network-
s because nodes in a community are more likely to
have same properties and all these communities may
be functional groups. The methods for detecting com-
munity in social networks are similar to the graph par-
titioning in graph theory [4, 5]. For example, in paral-
lel computing, the pattern of required communications
can be represented as a graph or network in which the
nodes represent processes and edges join process pairs
that need to communicate. The problem is to allocate
the processes to processors in such a way as roughly to
balance the load on each processor, while at the same
time minimizing the number of edges that run between
processors so that the amount of inter processor com-

munication is maximized. In general, finding an exact
solution to a partitioning task of this kind is an NP-
complete problem, so it is prohibitively difficult to be
solved accurately for large graphs. Inspired of this,
a variety of heuristic algorithms have been developed
that give acceptably good solutions in many cases, the
best known being perhaps the Kernighan-Lin algorith-
m which runs in time O(n3) on sparse graphs [11].

Many algorithms on community detection had been
proposed recently [6–8] and some of them are designed
by the parameters of the networks, for example, eigen-
vectors of graph matrix, maximal modularity Q, clus-
tering coefficient etc. Some algorithms are designed by
dynamical characters of networks, such as random walk
and spreading mechanism etc, however, those methods
only deal with the special cases. For example, a net-
work is divided into two communities according to the
second smallest eigenvector of Laplace matrix. Yet, the
second smallest eigenvector does not work when there
are more than two communities. A network can be cut
into several communities by the maximum modulari-
ty [9]. Unfortunately, computing the maximum mod-
ularity Q is proved to be NP-complete [10]. It means
not all the communities are detected by computing the
values of Q even though there are many heuristic algo-
rithms. The random walk [12, 13], each node to be a
walker and the walker will randomly choose a neighbor
and currently stands on to localize in each time, has
a probability to reach any other nodes, a dendrogram
is got and the communities can be detected with the
help of modularity Q. But it is difficult to specify the
optimum random-walking time. Signal sending [14] is
to transfer the topological relationship of nodes into
the geometrical structure in n-dimensional Euclidean
spaces, how to choose a proper p and partite all nodes
into p-cluster is the weakness even it is empirical by
the aid of F -statistics. Other methods depend on the
probability of the communities in dynamic social net-
works such as [15,16], and the values of modularity to
find the proper communities such as [7, 8].

Since there are seldom polynomial time algorithm-
s detecting the communities precisely, some valuable
researches are focus on how to obtain much lower com-
puting complexity for the detection algorithm compare
with much more accuracy. In this paper, in order to

2015 ISORA 978-1-78561-086-8 ©2015 IET 129 Luoyang, China, August 21–24, 2015



design fast and accurate algorithm to detect communi-
ties in weighted social networks, we proposed a novel
definition, i.e. k-strength relationship, which natural-
ly represents the coupling distance between two nodes.
Community structure detection algorithm is presented
using a generalized Modularity measure based on the
k-strength relationship matrix in various types of so-
cial networks. Furthermore, to obtain the the optimal
number of communities, we propose a new parameter-
free method using the eigenvalue gap of specific tran-
sition matrix. Finally, we apply our algorithm on both
benchmark network and real networks to evaluate its
efficiency. Theoretical analysis and experiments show
that the algorithm can uncover communities fast and
accurately, which be easily extended to large scale real
networks.

The outline of the paper is as follows. In Section
2 we introduce the fundamental definitions, such as
k-strength relationship and its generalized Modularity
measure. In Section 3, we present the details of our
framework, including the procedures of algorithm and
the analysis of computational complexity. Section 4
describes a novel method which able to determine the
optimal number of communities naturally. Then we
give some representative experiments on both bench-
mark and real networks to validate the effectiveness
and efficiency of the algorithm in Section 5 . Finally,
Section 6 concludes this paper.

2 Methods

2.1 Definitions

In many societies, such as the economic systems, the
agents in system influence one another directly: a
rush to buy or sell a particular asset can promote
the other to do the same. In most common cases,
the agents are influenced only by their neighbors who
joint by direct relationships. All the buyer and seller
formed an inseparable structure and have very little
interactions outside the structure. Such structure is
known as communities in social networks.
We denote agents by nodes in network and the influ-
ence each other by a weight between two nodes. In
the following, a network is denoted by G with N -node
set V , m-link set E and G also is an undirected
without loop or multi-edges. The adjacency matrix
A of G is a N × N zero-one matrix denoted by
A = (aij)n×n, where aij=1 if there is a link between
i and j, and aij=0 otherwise. The adjacency matrix
in an undirected graph is symmetric. If the network
is weighted, we denote the weight of each link by wij

and the weight matrix is W = (wij)N×N . For a given
positive integer k, we denote a path from node i to j
by a k-path if it is a walk with k+1 nodes and without
cycle on it. Ak = (ak

ij)n×n, ak
ij =

∑N
l=1 ak−1

il ×alj is the
number of k-paths from node i to j (i ̸= j), if i = j,
set ak

ij=0. We denote Sk = (sk
ij)N×N be a matrix of

G for a given positive integer k. Sk is defined as a

kth-strength matrix of G. It is recursively defined
as following:

If k = 0,

S0 = A, (1)

If k = 1,

S1 = (wij)N×N , (2)

For all k ≥ 2, let display

Sk = (sk
i,j)N×N , sk

i,j =

ak
i,j∑

s=1

1

k

k∑

l=1

wis
l−1is

l
, (3)

where i = is0, i
s
1, · · · , isk−1, i

s
k = j are k-path fors =

1, 2, · · · , ak
i,j . To compute the values of sk

i,j , S0 = A
is fixed as the network determined. All the k-path be-
tween each pair of nodes can be obtained by Ak, Si,j

is an additive polynomial. Therefore, we can compute
the value of Sk

i,j precisely.

Each k-strength matrix induces a k-strength rela-
tionship: Rk = {(i, j, si,j)|si,j =

∑k
l=1 sl

i,j}. That is,

si,j in Rk are the elements of S = S1 +S2 + · · ·+Sk =

(
∑k

l=1 sl
i,j = si,j)N×N . We denote S a k-strength

matrix of G and the networks induced by S is a k-
strength relationship networks. It is involved with a
global idea of the mean-field theory on the definition
of k-strength relationship networks. Each node knows
all the others’ information (the weights of nodes). It
might be quite reasonable in many real systems. For
example, the traders on Shanghai Stock Exchange are
influenced by others on the same floor, but they can
also be reminded by the trading patterns occurring on
London or Paris. Therefore, some mature trading be-
havior patterns will be formed in economic systems. It
is also very common in social networks to express the
strength of friendship among people. For instance, in
acquaintance network, the relationship is the tightness
of acquaintance and higher the value is, more often
the communication occurs. Another useful definition
in our framework is minimal q-cut of a graph, which
denotes the cut edges own the smallest sum of weight.

Here, q is a positive integer, {C1, C2, · · · , Cq} with
|Ci| = ki and ∪q

i=1 Ci ⊆ V (G) be a vertex subset such
that the remaining of G after deleting all Ci is a dis-
connected and the sum of link weights among the re-
maining is the minimum. It was found that a minimum
cut is a partition of G when ∪q

i=1Ci ⊆ V (G).

Guttmann had designed an algorithm to detect min-
imum cut in complete graphs [17] and inspired of his
idea, we will detect the communities using the strength
relationships. Our framework is also based on maxi-
mizing Modularity which firstly proposed by Newman,
and we generalized it on strength relationship matrix
of G. Suppose there are q(q ≤ N/2) communities in G
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(how to confirm the value of q is really a tough prob-
lem, we will propose a framework in section 4 to solve
it), C = {C1, C2, · · · , Cq}. The generalized Modularity
Q in strength relationship matrix is defined by

Q = max
q

q∑

i=1

(ci,i − c2
i ) (4)

where ci,i =
∑

i,j
si,j

∆ δi,j ,ci =
∑

j si,j and
∆ =

∑
i,j si,j . δi,j = 1,if the nodes i and j are

in the same community, δi,j = 0, otherwise. ci,i

denotes the fraction of strength with both ends in the
same partition Ci, ci is the proportion of strength
with one end in Ci and the other not. If the network is
unweighted (binary network), the Q is just Newman’s
modularity. Based on this form, the new measure can
capture the properties of the real social systems. One
can find that both direct and undirect information
between two nodes can be used within our framework.
When two nodes are exchanging their information in
social networks, the chains will formed within the same
community. Thus, it might be more reasonable to
describe relationship between nodes using the strength
relationship, such as same ideas in a society are more
likely be connected closely and transmitted one by one.
It means a tightly connected social community implies
a faster rate of information transmission or rumor
spreading rate than a sparsely connected one, because
more paths there are, faster transmissions rate there is.

2.2 Determining the k-strength relation-
ship matrix

As described above, the k-strength relationship matrix
is fundamental to the whole framework. In this section,
we focus on determining the k-strength relationship
matrix. The following theorem not only provides the
process of computing all the elements, but also reveals
the important time complexity information.
Theorem 1: The k-strength relationship matrix W k

can be obtained in polynomial time.

Proof : Suppose adjacent matrix of network G is
A, the number of all k-length paths from i to j is
ak

i,j , and Ak = Ak−1 × A = (ak
i,j) in [16]. A path

is called k-path if its length is k. Denote the k-path by
{i0, i1, · · · , ik−1, ik} with k + 1 nodes and is ̸= ij for
all s and j, that is, there is no cycle in the path.

In order to get the elements in k-strength relation-
ship matrix, we define an operation ⊕ on weight ma-
trix of G. ⊕ : W k = W k−1 ⊕ W = (wk

i,j)N×N , where

wk
i,j is defined as: If

∑N
l=1 (wk−1

i,l × wl,j ̸= 0), it mean-
s there are k links connect node i and j. Equivalent,
there are at least one term in

∑N
l=1 (wk−1

i,l × wl,j ̸= 0).
Without of generally, we suppose, there are h terms
not zeros,wk−1

i,l1 × wl1,j ̸= 0, wk−1
i,ls × wls,j ̸= 0, wk−1

i,lh
×

wlh,j ̸= 0. Then wk
i,j =

∑h
s=1 (wk−1

i,ls + wls,j); Other-

wise, wk
i,j = 0 (that is, there is no link joint i and j).

The value of wk
i,j is the sum of all weights in

each k-path from i to j. We can take not so much
effort to obtain sk

i,j = wk
i,j/k. That is sk

i,j =
∑ak

i,j

s=1
1
k

∑k
l=1 wis

l−1,is
l

= wk
i,j/k.

All the k-path can be lay out when∑N
l=1 (wk−1

i,l × wl,j) is determined. If wk−1
i,l1 × wl1,j ̸=

0, wk−1
i,ls × wls,j ̸= 0, wk−1

i,lh
× wlh,j ̸= 0 for each

positive integer k ≥ 2; Denote a k-path connect
nodes i and j by P k

i,j , it is easily to find there are

ak
i,j k-paths joint node i and j and hence,P k

i,j =

{P k−1
i,l1 ∨ (l1, j), P k−1

i,l2 ∨ (l2, j), · · · , P k−1
i,lh

∨ (lh, j)},

where P k−1
i,l ∨ (l, j) means the all k-path formed by

the (k − 1)-paths in set P k−1
i,l join the link (i, j).

Finally, we can lay out all the k-paths inductively.
That is, ⊕ is a polynomial time algorithm. Totally,
the strength matrix is got by computing the weight
matrix with computing complexity time O(n2m) since
the multiplication of each pairs of N -rank matrixes
costs at most N × N and at most m links. Output
Sk = (sk

i,j)N × N for a fixed k. Outline all the path-
s from i to j with length k, i = is0, i

s
1, · · · , isk−1, i

s
k =

j for s = 1, 2, · · · , ak
i,j .

The proof is end.

2.3 Community detection algorithm

A minimal q-cut Ẽ of G is an edge set with minimal
sum of weight that the remaining graph of deleting
the edges set, G − Ẽ, is an isolated graph. A di-
rectly method to determine the partitions is investi-
gating all the components of the remaining graph C =
{C1, C2, · · · , Cc} . We need chose the components such
that

∑
i<j w(Ci, Cj) is minimum or

∑c
i=1 w(Ci, Ci) is

maximum by maximum flow and minimum cut the-
orem [18]. However, the minimal q-cut problem is
NP-complete and it is difficult to find a polynomial
algorithm. Fortunately, Guttmann-Beck and Hassin
designed an algorithm in complete graphs and proved
the approximate solution is less than three times the
optimal [19]. Inspired by this nice idea, we obtain the
detailed procedures in Algorithm 1.

2.4 Computational complexity

For a given positive number q, we can solve the
transport problem in time O(N) since it is a 0-1
transportation problem. There are Cq

NO(qN) subsets
of V . Altogether the time complexity is O((q + 1)N).
Here, two important claims are proposed which useful
to the analysis:
Claim 1: If {C1, C2, · · · , Cq} is a partition of G̃, if
and only if it is a partition of G.
Proof : It is easy to verify that the claim holds, since
G̃ and G has the same vertex set.
Claim 2: Suppose {C1, C2, · · · , Cq} are q partition
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Algorithm 1 Community detection algorithm

Require: a social network G = (V, E);
Ensure: a minimum q-partition with maximal mod-

ularity value.;
1: Step 1: Shrink each one degree node to its neigh-

bor until there is no one degree node in G. This
operation does not affect the community detection,
because the one degree node has no other choice
but to its unique neighbor, so the one degree node
will be in the same community with its neighbor.
We still write the network as G.

2: Step 2: Determine the optimal number of com-
munities q using the theorem 2(we will show it in
the following section).

3: Step 3: For a fixed q , the minimum q-cut problem
is polynomial time solvable in O(|V |q2

) [17].
4: Therefore, we suppose we had a partition C =

{C1, C2, · · · , Cq} in G̃ = (V, Ẽ), and |Ci| =
ki,

∑q
i=1 ki = N, Ci ∩ Cj = ∅. We will detect

he minimum q-cut in G̃, and then prove it is al-
so is the minimum q-cut in G. Let vi ∈ Ci for i =

1, 2, · · · , q. xi,j =

{
1 , uj ∈ Ci

0 , otherwise
Begin

For {v1, v2, · · · , vq} ⊂ V, vi ∈ Ci.
For uj ∈ V − {v1, v2, · · · , vq},the following

transport problem is optimal.

min :

q∑

i=1

N−q∑

j=1

w(Ci, uj)(1 − xi,j)

subject to





∑N−q
j=1 xi,j = ki − 1 , i = 1, 2, · · · , q∑q

i=1 xi,j = 1 , j = 1, 2, · · · , N − q
xi,j ∈ {0, 1} , i = 1, 2, · · · , q and j = 1, 2, · · · , N − q

End

Ci = Ci∪{uj |x∗
i,j = 1, 1 ≤ j ≤ N−q} for 1 ≤ i ≤ q.

End
Back to begin

5: Step 4: Output:{C1, C2, · · · , Cq} with vi ∈ Ci is

a minimum q-cut on G̃.

of G̃ such that
∑q

i<j,Ci,Cj⊂G̃
w(Ci, Cj) is a mini-

mum. Then there is a minimum partition of G̃ , say
{C1, · · · , Cq}, is also a minimum partition G such
that

∑q

i<j,Ci,Cj⊂G
w(Ci, Cj) is a minimum.

Proof : By the definition of G̃, ∆ =∑q

i<j,Ci,Cj⊂G̃
w(Ci, Cj). Since w(Ci, Cj) =

∑
i∈Ci,j∈Cj

s1
ij +

∑
i∈Ci,j∈Cj

∑
k=2 sk

ij and the

value of ∆ is fixed because {C1, C2, · · · , Cq} is

the minimum partition of G̃. We know that∑
i∈Ci⊂G̃,j∈Cj⊂G̃ s1

ij =
∑

i∈Ci⊂G,j∈Cj⊂G s1
ij by

the definition of k-strength relationship. Therefore,
we construct a minimum partition {C1, · · · , Cq} in

G̃ by Algorithm 1 such that
∑

i∈Ci⊂G̃,j∈Cj⊂G̃ s1
i,j is

a minimum, then,{C1, · · · , Cq} is the minimum q
partition of G.

The proof is end.

2.5 Determine the number of the commu-
nities

It is not difficult to find out that if a piece of
information is drop into a reality community, the
information will stay within the community more
often as the dense connections. According to the
stochastic theory, the spectral properties of Markov
process are able to naturally reveal the ”stability” of a
specific partition [12] [13]. Inspired by it, we propose
an efficient method to determine the optimal number
of communities in a social network.
Theorem 2: Let P be the generalized transition
matrix of G. Then the optimal number of communities

is opt = arg minz(
log |λz−1|
log |λz| ), where λz is the z largest

eigenvalue of matrix G.

Proof : The transition probability present an ability
that a node diffuse the information or disease to others,
it positive related to the links’ weight. The transition
probability matrix P = (pi,j) is defined as

pi,j =
ri,j∑N

j=1 ri,j

, (5)

where ri,j = ⟨si,j⟩k is the average k-strength relation-
ship value across all k. Via this representation, our
framework can be utilized for the purposes of commu-
nity detection analysis. Let P be the transition prob-
ability matrix, we have:

P = D−1
C C, (6)

where DC is the diagonal degree matrix of R = (ri,j).

Let p
(τ)
i,j be the probability of hitting unit j after τ steps

starting from unit i, we have:

p
(τ)
i,j = (P τ )i,j . (7)
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For this ergodic Markov process, P τ corresponds to
the probability of transitions between states over a pe-
riod of τ time steps. To compute the transition matrix
P τ , the eigenvalue decomposition of P is used. If λk

with k = 0, ..., N − 1 denote the eigenvalues of P , and
its right and left eigenvectors fk and hk are scaled to
satisfy the orthonormality relation [21]:

fkhl = δkl, (8)

the spectral representation of P is given by

P =
∑

k

λkfkhk, (9)

and consequently

P τ =
∑

k

λτ
kfkhk. (10)

We assume that eigenvalues of P are sorted such that
λ0 = 1 > |λ1| ≥ |λ2| ≥ ... ≥ |λN−1|. The convergence
of every initial distribution to the stationary distribu-
tion P (0) corresponds to the fact that the spin of whole
system ultimately reaches exactly the same value as
time goes on. This perspective belongs to a timescale
τ → ∞, at which all eigenvalues λτ

k go to 0 except
for the largest one, λτ

0 = 1. In the other extreme of
a timescale τ = 0, P τ becomes the identity matrix.
All of its columns are different, and the system disinte-
grates into as many communities as the elements there
are.

For the purposes of community identification, inter-
mediate timescales are of interest, on which many but
not all of the eigenvalues are practically zero. If we
want to identify z communities, we expect to find P τ at
a timescale, the eigenvalues λτ

k of which are significant-
ly different from zero only for the range k = 0, ..., z−1.
This is achieved by determining τ such that |λz|τ ≈ 0.
Using a parameter ζ ≪ 1 which is considered to be
practical zero, we require |λz|τ = ζ to determine the
appropriate hitting time for the whole system entering
into a metastable state with z different communities:

τ(z) =
log ζ

log |λz|
. (11)

The vanishing of the smaller eigenvalues at a given
timescale describes the loss of different states, and the
removal of the structural features encoded in the corre-
sponding weaker eigenvectors. We define the stability
of z community structure, Nz, as the ratio between
the hitting time and exiting time of z-state, τ(z) and
τ(z − 1):

Nz =
log ζ/ log |λz|

log ζ/ log |λz−1|
=

log |λz−1|
log |λz|

. (12)

Because of log ζ/ log |λz| ≤ log ζ/ log |λz−1|, it is easy
to show 0 ≤ Nz ≤ 1, and a smaller Nz implies a better
community structure. For real networks, the label of

(a)

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1

z
N

z

(b)

Figure 1: (a) A hierarchical network with 3-level com-
munity structure with 400 nodes. Due to heavy link
density, it most likely contains eight small communi-
ties. Each two small communities are contained in a
moderate community and finally the whole network is
partitioned into two big sparse ones. (b) The stability
Nz versus the number of communities z.

the smallest Nz can be used to estimate the natural
number of communities, opt, in a given network:

opt = arg min
z

(Nz). (13)

where arg represents the optimal z, at which Nz is
minimized.

The proof is end. The complexity of this part mainly
depends on computing the eigenvalue and correspond-
ing eigensystem of matrix G. This procedure costs
O(n2 log n) times.

To show that our method can discover the optimal
community number of hierarchical structures [20] [22]
in different scales, Fig.1 give a representative example
of the multi-level community structures. In this case,
the number of Nz (z > 1) approaching to zero reveals
the actual number of hierarchical levels hidden in a
network. Furthermore, the significance of such levels
can be quantified by their corresponding values of Nz.

3 Results

In this section, we will test the performance of our
algorithm. Three experiments are designed and im-
plemented for two main purposes: (1) to evaluate the

2015 ISORA 978-1-78561-086-8 ©2015 IET 133 Luoyang, China, August 21–24, 2015



0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
in

N
z

(a)

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
in

N
M

I

 

 

 Our algorithm

 Fast Newman

 Danon

 Louvain

 Informap

 Clique Percolation

(b)

Figure 2: (a) Nz(z = 4) values of networks versus d-
ifferent Pin. (b) Comparison of accuracy of our algo-
rithm with other five existing algorithms.

accuracy of the algorithm; (2) to apply it to real large-
scale networks.

3.1 Benchmark network

We empirically demonstrate the effectiveness of our
algorithm through comparison with other five well-
known algorithms on the artificial benchmark network-
s. These algorithms include: Newman’s fast algo-
rithm [1], Danon et al.’s method [23], the Louvain
method [24], Infomap [25], and the clique percolation
method [26]. We utilize widely used Ad-Hoc network
model, which can produce a randomly synthetic net-
work containing 4 predefined communities and each
has 32 nodes. The average degree of nodes is 16, and
the ratio of intra-community links is denoted as Pin.
As Pin decreases, the community structures of Ad-Hoc
networks become more and more ambiguous, and cor-
respondingly, their N4 values climb from 0 to 1, as
shown in Fig.2(a).

We use the normalized mutual information (NMI)
measure [28] to qualify the partition found by each al-
gorithm. We ask the question whether the intrinsic
scale can be correctly uncovered. The experimental re-
sults are illustrated in Fig.2(b), where y-axis represents
NMI value, and each point in curves is obtained by av-
eraging the values obtained on 50 synthetic networks.

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

z

N
z

(a)

(b)

Figure 3: (a) Computational results of Nz with dif-
ferent z on US football network. (b)Computational
results of our algorithm on the football team network.
The nodes with the same shapes and colors are team-
s in the same group, and the dense subgraphs in the
layout are communities detected by the algorithm.

As we can see, all algorithms work well when Pin is
more than 0.7 with NMI larger than 0.85. Compared
with other five algorithms, our algorithm performs the
best. Its accuracy is only slightly worse than that of
the clique percolation when 0.5 ≤ Pin ≤ 0.65. How-
ever, the complexity of the clique percolation is more
than O(n3) and nearly the same as the time consum-
ing Breadth First Search(BFS). By contrast, the time
complexity of our method is very low(O(n2)) and can
be easily implemented.

In addition to the Ad-Hoc network, we have also test-
ed for ring of cliques networks with 1000 cliques and
10 nodes in each. The cliques benchmark network has
been introduced to show that the modularity measure
(and some other measures) faces resolution limit prob-
lem. The network is created by connecting k complete
networks on a ring. The model has 2 parameters name-
ly, the number of cliques and the size of cliques. As the
result, the algorithm was able to find the communities,
i.e. cliques, perfectly.
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3.2 US Football network

The United States college football team network has
been widely used as a benchmark example [1] [27] due
to its natural community structure. We used the data
gathered by Girvan and Newman [1]. It is a represen-
tation of the schedule of Division I American Football
games in the 2000 season in USA. The nodes in the
network represent the 115 teams, while the edges rep-
resent 613 games played in the course of the year. The
whole network can be naturally divided into 12 distinct
groups. As a result, games are generally more frequen-
t between members of the same group than between
members of different groups.

First, we calculate Nz and the results are illustrat-
ed in Fig.3(a). Results show that the optimal number
of communities is opt = 12, which perfectly agree with
the true situation. Then we apply our algorithm to the
football team network and partitions the network into
12 communities, which is shown in Fig.3(b). The cor-
rect rate of our method is more than 93%, which mean-
s that the detected community structure is in a high
agreement with the true community structure. Actu-
ally, methods based on optimization of modularity Q
usually can just find 11 communities and the correct
rate is low due to the fuzziness of the network. We con-
cludes that the ability of our method to reveal a natural
characteristic is valuable for many real networks. Fur-
thermore, the misidentified nodes can be viewed as the
interesting overlapping nodes which described as yellow
triangles. The nodes are all fuzzily lie at the boundary
communities and can be viewed as some relative inde-
pendent clubs which can be interpreted readily by the
human eye.

4 Conclusion

In this paper, we have designed an efficient algorith-
m to detect community in social network using a new
definition, i.e. k-strength relationship, which natural-
ly represent the coupling degree between two nodes.
Theoretical analysis shows this algorithm is polynomi-
al time which much better than most existing ones.
Then, to obtain the the optimal number of communi-
ties, we propose a new parameter-free method using
the eigenvalue gap of specific transition matrix. Final-
ly, we apply our algorithm on both benchmark network
and real networks to evaluate its efficiency. Theoreti-
cal analysis and experiments show that the algorithm
is able to uncover the communities fast and accurately,
which can be easily extended to large scale real net-
works.
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