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Abstract 

In this paper, a mathematical model on supply chain man-

agement problem is given. To present optimal decision for 

the problem, we propose a new type of algorithm, and the 

global convergence of algorithm is also established under 

milder conditions. Furthermore, we prove that the method 

has R-linear convergence rate with the underlying map-

ping being P-uniform function and Lipschitz continuous. 

1 Introduction 

With the development of computer networks, the globali-

zation and networking process for manufacturing have 

been gaining rapid development. With the emergence of 

new manufacturing models such as Hypothesized Manu-

facture Dynamic Alliance, the new management models 

which adapt to that are more urgent. The supply chain 

management concept appears under this new environment 

of competition. In recent years, both in the application and 

academic research, supply chain management has been 

becoming a hot topic of modern logistics research, and so 

provoked strong research interest of many scholars. The 

research area involves the model, analysis and computa-

tion for supply chain management, related to manufactur-

ing, transportation, logistics, retail, and sales([1, 2, 3]). 

Nagurney et al. ([4]) gave variational inequality models of  

supply chain network equilibrium consisting of three tiers 

of decision-makers on the network, and then established 

that the governing equilibrium conditions which reflected 

the optimality conditions of the decision-makers consist-

ing of manufacturers, retailers, and consumers along with 

the market equilibrium conditions. Dong et al. ([5]) estab-

lished a finite dimensional variational inequality supply 

chain network model which contained the manufacturers, 

demand suppliers and retailers. In 2005, Nagurney et 

al.([6]) established a supply chain network model of finite 

dimensional variation inequality which contained the sup-

ply side and demand side. Zhang ([7]) gave a non-linear 

complementary model for supply chain network equilibri-

um. Although the models of supply chain management 

under certain conditions were given in the above-

mentioned documents, but the conditions of models tena-

ble and algorithms convergence were too harsh.  To this 

end, we reformulate the supply chain management prob-

lem as a nonlinear complementarity model in the paper.  

To solve this model, many effective methods have been 

proposed for solving it ([8, 9, 10, 11]). The basic idea of 

these methods is to reformulate the problem as an uncon-

strained or simply constrained optimization problem (see 

[8, 9, 11]), and use the Newton-type or the trust region 

algorithms to solve it. Although the corresponding con-

vergence and convergence rate were established, but, most 

of these algorithms require the Jacobian matrix is non-

singular at the solutions or require there exists strict com-

plementary solution, and require the mapping function  is 

monotonic at the same time.This motivates us to consider 

a new method for solving this model under weaker condi-

tions.  

This paper is organized as follows. In Section 2, we 

give the supply chain management problem and the non-

linear complementarity problem model. A new type of 

algorithm for solving this model is proposed in Section 3. 

In Section 4, we establish the global convergence of the 

algorithm under milder conditions, and also prove that the 

method has R-linear convergence rate with the underlying 

mapping being P-uniform function and Lipschitz continu-

ous.  The paper concludes with Section 5, in which we 

summarize our results and present suggestions for future 

research. 

2  The Supply Chain Management Problem 

and Model 

In this section, we give the supply chain management 

problem and a nonlinear complementarity model. We first 

consider a two-story supply chain problem with m  manu-

facturers and n  vendors (see Figure 1): 

 

manufacturers      1                  i                   m  

 

 
vendors                1                  j                  n  

Figure 1 

Let iq  denote the amount of production of manufacturer 

i ( 1, , .i m   ), Denote 1: ( , , ) .T m

mq q q R    Sup-

pose that the production costs of manufacturer i  is if , the 

amount of goods of manufacturer i  supply to vendor j  is 

ijq , the transaction costs between them is ijc , where ijc  

including transportation costs. Denote 
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: ( , 1, , , 1, , ) .mn

ijQ q i m j n R       

 Assume the cost of production if  is a function of Q , 

transaction cost ijc  is a function of ijq , and 

1

,    1, , .
n

i ij

j

q q i m


    

The total income of manufacturer i  is the commodity 

price multiplied by the amount of commodity sold, the 

total expenditure is the sum of production cost and trans-

action cost. Let 
*

ij  denote the price of the goods of manu-

facturer i  sell to vendor j , then, the revenue maximiza-

tion problem of manufacturer i  can be expressed as 

*

1 1

( ) max{ ( ) ( )}

. 0, 1, , .

n n

i ij ij i ij ij

j j

ij

PM q f Q c q

s t q j n


 

 

   

 
 

Suppose that the competitions of manufacturers are 

non-cooperative, the production cost functions if  and the 

transaction cost functions ijc  are continuously differenti-

able convex functions, then, the optimization prob-

lem ( )
i

PM  is a convex programming. Assume that 

* *( , , )ijQ q i j   is the optimal solution of ( )
i

PM , 

1, ,i m , then, 
*

Q  is a " equilibrium solution" of 

manufacturer, and
*

Q satisfies the following KKT condi-

tion: 

* * *

1

1 1

* *

( ) ( ) ( , , ) 0

0, 0, 1, ,

n n

T

i ij ij ij j i in

j j

ij ij ij

f Q c q e

q q j n

  



 

        

     







 
   (1) 

where , 1, ,
ij

j n      is Lagrange multiplier, je  is unit 

vector, its j-th component is 1, and the other components 

are 0. Formula (1) is equivalent to 
**

* *

**

* *

( )( )
0, 0, 1, , ,

( )( )
( ) 0, 1, , .

ij iji

ij ij

j ij

ij iji

ij ij

j ij

c qf Q
q j n

q q

c qf Q
q j n

q q






       

 


      

 









      (2) 

Let : nm nmf R R ,  and 

( ) ( ( ), 1, , , 1, , )
ij

f Q f Q i m j n         , 

where 

  

**
*

( )( )
( ) : , ,

ij iji
ij ij

j ij

c qf Q
f Q i j

q q



   

 
.      (3) 

For the convenience of the following description, the (2) 

is abbreviated as 

( ) 0, 0, ( ) 0.
T

f Q Q Q f Q                          (4) 

We use *X  to denotes the solution of (4), and assume that 
*X is not empty.  

3 Algorithm  

In this section, we would establish a new-type method to 

solve (4), we first need the definition of projection opera-

tor and some relate properties ([12]). 

Definition 1. Assume that nZ R  is a non-empty 

closed convex set, for any nx R , the orthogonal projec-

tion of  x  onto Z , i.e., argmin{|| ||| }x y y Z  , is de-

noted by ( )ZP x . 

Lemma 1. For ,nu R v Z  , we have 

(i) )(,)( uPvuuP zz  0 , 

(ii) ||)()(|| vPuP zz   |||| vu  . 

For (4), we call  

( , ) min{ , ( )} { ( )}mnR
R Q Q f P Q fQ Q Q 



    

is the projection residual, where   is positive constant. 

There is an important relationship between the projection 

residual and the solution of (4)([13])． 

Lemma 2. The 
*Q  is a solution of (4) if and only if 

*( , ) 0R Q   , where   is positive constant． 

Now, we give a new algorithm for solving (4) . 

Algorithm 1 

Step 1. Give 
0 mnQ R , let 0 1  , 1 1,  0 2  , 

: 0k  ． 

Step 2.  For 
mk nQ R , letting  

1

1 1( ) { ( )}.mn

k k k

k kR
Q P Q f Q 





    

 If 
1

1 1( , ) ( ) 0k k k

k kR x Q Q 

    , then, stop．Otherwise, 

letting km

k  , where km is the smallest non-negative 

integer m which satisfies the following inequality 

( ) ( ( )) ( , ) ,k k k

k k kf Q f Q R Q    ‖ ‖ ‖ ‖                (5) 

where 

( ) { ( )}mnR

k k k

k kQ P Q Qf 


  ．                  (6) 

Step 3. Let 
1 [ ],mn

k

R

k

k kQ P Q d


    go to step 2, where 

{ ( , ) ( ( ) ( ( )))},k k k

k k k kd R Q f Q f Q     

2 2(1 ) ( , ) / .k

k k kR Q d    ‖ ‖‖ ‖  

Remark 1. The search direction given by Algorithm 1 

is different from the search direction given by Noor([15]). 

{ ( , ) ( ) ( }k k k

k kR u T u T v       

In this following, the rationality of step rule (5) is given. 

Proposition 1. Assume that ( )f Q  is continuously dif-

ferentiable, if kQ  is not the solution of (4), then, for 

any (0,1)  , there exists ˆ( ) (0,1]kQ  , such that, for any 

ˆ(0, ( )]kQ  , we have  

( ) ( ( )) ( , )k k kf Q f Q R Q    ‖ ‖ ‖ ‖, 

where 
k mnQ R , ( )kQ   were defined by (6). 

 Proof. Assume that the conclusion is false. Then, there 

exists (0,1)  , for any ˆ0 1  , there exists ˆ0     

such that 

( ) ( ( )) ( , )k k kf Q f Q R Q    ‖ ‖ ‖ ‖．       (7) 

Let ̂  converges to 0. Then, one has   converges to 

0. For any 0  , let  , if  
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|| ( ) || || { ( )} ||

                     || min{ , ( )} || ,

mnR

k k k k k

k k

Q Q Q f

f

P Q Q

Q Q

 

 



 

 

 
 

then 

1

1 1

( ) ( ( ))

( ) ( ( )})

( )}

|| min{ , ( ) |

{

,

{

} |

mn

mn

k k

k k k

k k k

k

R

k

R

f Q f Q

f Q f P Q f Q

c Q P Q f Q

c Q Qf c







 







  

  

 

‖ ‖

‖ ‖

‖ ‖
                   (8) 

where the first inequality is based on that ( )f Q  is contin-

uously differentiable on the closed interval 

ˆ[ (, ( ))]k k kQ Q Q , 1 0c   is a constant, the last inequality is 

based on the continuity of ( )f Q  at the point kQ . By (7) 

and (8), we have 

1( , ) ( ) ( ( )) .k k kR Q f Q f Q c       ‖ ‖ ‖ ‖  

Combining this with lemma 2, we know that *kQ X , this 

is contradictory with that kQ  is not the solution of (4).  

Remark 2.  From the proof of Proposition 1, it is easy 

to see that the conclusion still holds if we replace the con-

dition “ ( )f Q  is continuously differentiable” by “ ( )f Q  is 

locally Lipschitz continuous”. 

4  Global Convergence Results of Algorithm 

In this section, we would set up the global convergence 

and global linear convergence rate of the algorithm 1 un-

der milder conditions. To this end, we need the following 

assumption and some technical lemmas for our subsequent 

analysis. 

Assumption 1. For the function ( )f Q  defined in (4), 

we assume that  
*( ), 0f Q Q Q  , 0,Q   

where 
* *Q X .  

Obviously, if the function ( )f Q  is pseudo-monotone, 

then, ( )f Q  satisfies Assumption 1. Thus, Assumption 1 

is weaker than the pseudo-monotone condition, is weaker 

than the strong pseudo-monotone, and is also weaker than 

monotonous ([14]). 

Lemma 3. Assume that Assumption 1 holds and ( )f Q  

is continuously differentiable. Then, for any * *Q X , we 

have 
* 2, (1 ) ( , ) .k k

k kQ Q d R Q       ‖ ‖  

Proof. According to the iterative process of algorithm 1, 

for any positive integer, we have , ( ) .k k mn

kQ Q R   By 
* *Q X  and Lemma 1, we have  

*)(),()]([ QQQQfQ k

k

k

kk

k

k    0. 

Combines with the definition of ( , )R Q   again, we have  
*( , ) ( ), ( , ) 0,k k k k

k k kR Q f Q Q Q R Q         

thus, one has 
* 2

*

( , ), ( , )

( ), ( ), ( , ) 0.

k k k

k k

k k k k

k k k

R Q Q Q R Q

f Q Q Q f Q R Q

 

  

  

      

‖ ‖
 

That is, 
*),(),( QQQfQR kk

kk

k    


2||),(|| k

kQR   ),(),( k

kk

k QRQf           (9) 

In addition, according to Assumption 1, we have 

*( ( )), ( ) 0,k k

k kf Q Q Q                                      (10) 

Combining this with the definition of ( )k

kQ  in algorithm 

1, we get ( ) ( , )k k k

k kQ Q R Q   . From (10), we have 
* *

*

( ) , ( ( )) ( , ) , ( ( ))

 , ( ( )) ( , ), ( ( )) ,

0 k k k k k

k k k k

k k k k

k k k

Q Q f Q Q R Q Q f Q

Q Q f Q R Q f Q

   

  

        

      
 

that is 
*, ( ( )) ( , ), ( ( )) .k k k k

k k kQ Q Q R Q f Qf               (11) 

By the definition of kd  in Algorithm 1, we get  

*

*

* *

2

2

,

, ( , ) { ( ( )) ( )}

, ( , ) ( ) , ( ( ))

( , ) ( ), ( , )

  ( , ), ( ( ))

( , ) ( ) ( ( )), ( , )

( , )

k

k

k k k k

k k k

k k k k k

k k k k

k k k

k k k

k k

k k k

k k k k

k k k k

k

k

Q Q d

Q Q R Q Q f Q

Q Q R Q Q Q Q Q

R Q f Q R Q

R Q f Q

R Q f Q f Q R

f

Q

f

R Q

f  

   

  

  

   



   

     

        

   

  

    



‖ ‖

‖ ‖

‖ 2

2

( ) ( ( )) ( , )

(1 ) ( , ) .    

k k k

k k k

k

k

f Q f Q R Q

R Q

  

 

 

 

‖ ‖ ‖‖ ‖

‖ ‖

 

where the first inequality is based on (9) and (11), and the 

second inequality is based on the Cauchy-Schwarz ine-

quality, and the third inequality is based on (5). 

Lemma 4. Assume that Assumption 1 holds and ( )f Q  

is continuously differentiable. Then, the sequence { }k  

and { }k  which defined by the Algorithm 1 have uniform-

ly positive lower bounds, respectively.  

Proof. Firstly, we prove { }k  have uniformly positive 

lower bound. 

By the expressions of kd defined in Algorithm 1 and 

(5), we obtain 
2 2 2 2 2 22 ( , ) 2 ( () ( ) 2(1 ) ( , ) .)k k k k

k k k kkd R Q f Q f Q R Q        ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
 

2 2 2 2 2 22 ( , ) 2 ( () ( ) 2(1 ) ( , ) .)k k k k

k k k kkd R Q f Q f Q R Q        ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖. 

From the expressions of k  defined in Algorithm 2.1, we 

have 

2 2

2

1
(1 ) ( , ) / .

2(1 )

k

k k kR Q d


  



  


‖ ‖‖ ‖     (12) 

Secondly, we prove k  have uniformly positive lower 

bound. 

Using the step rule of Algorithm 1, we get  

2 2( , ) ( ) ( ( )) ( ) ( , ) ,k k k k k kR Q f Q f Q c Q Q c R x           ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖2 2( , ) ( ) ( ( )) ( ) ( , ) ,k k k k k kR Q f Q f Q c Q Q c R x           ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
 

2 2( , ) ( ) ( ( )) ( ) ( , ) ,k k k k k kR Q f Q f Q c Q Q c R x           ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖2 2( , ) ( ) ( ( )) ( ) ( , ) ,k k k k k kR Q f Q f Q c Q Q c R x           ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖
 

where the second inequality is based on that ( )f Q  is con-

tinuously differentiable in closed interval 1) ],[ ( )k kQ Q , 

2 0c   is a constant, that is, 2/ c  ．Thus,  

2min{1 }/,k c  ． 

Lemma 5. Assume that Assumption 1 holds and ( )f Q  

is continuously differentiable. Then, the sequence { }kQ  

which defined by the Algorithm 1 is bounded. 

Proof. Suppose that * *Q X , then  
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* 2 * 2 2 2

* 2 2 2 2 2

* 2 2

2 2

* 2

[ ] [ ]
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( )

2 (1 ) ( , )

2 (1 ) ( , )

(1 ) ( , )

[2(1 )

  

k

k

K k k K

k

k k

k k

k k k k

k k

k k k k

k k

k k

k

k k

k

k

Q Q

P Q d P Q

Q Q d

Q Q Q Q d d

Q Q R Q d

Q Q R Q

R Q

Q Q





  

    

  

   

  

 

  

  

    

    

   

 

    

‖ ‖

‖ ‖

‖ ‖

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

‖ ‖

‖ ‖

•

2

2
* 2 2

2

(1 )] ( , )

(1 )
(2 ) ( , )

2(1 )
.

k

k

k k

k

R Q

Q Q R Q

 


  






   



‖ ‖

‖ ‖ ‖ ‖

    (13) 

where the second inequality is based on Lemma 3, the 

third equality is based on the expression of k  defined by 

Algorithm 1, and the last inequality is based on (12). 

Combining (13) and the definitions of ,  in the Algo-

rithm 1, we obtain that the sequence  *kQ Q‖ ‖  is non-

negative decreasing. So,  *kQ Q‖ ‖  is bounded, and then, 

{ }kQ  is bounded. 

Theorem 1. Assume that Assumption 1 holds and 

( )f Q  is continuously differentiable. Then, the sequence 

{ }kQ  which defined by the algorithm 1 is global conver-

gence to the solution of (4). 

Proof. By (13), we have  *kQ Q‖ ‖  is non-negative 

decreasing. Thus,  *kQ Q‖ ‖  is convergence. Combining  

this with (13),  one has 

2

0

( , ) ,k

k

k

R Q 




 ‖ ‖  

 that is, lim ( , ) 0.k

k
k

R Q 


‖ ‖  Therefore, every accumulation 

point Q  of { }kQ  is the solution of (4). Letting *Q Q  in  

(13), then  kQ Q‖ ‖  is convergence, and { }kQ  is global 

convergence to Q . 

In order to establish the global linear convergence rate 

of Algorithm 1, we give the following definition and 

lemmas which is easy to prove. 

Definition 2. We call ( )f Q  is P  uniform function, if 

for any , mnu v R , 0  , such that 

  2

1
max [ ( ) ( )] [ ] .i i

i mn
f u f v u v u v

 
   ‖ ‖  

Lemma 6. Suppose 
* *, , ,a b R a b R  . If * * 0a b  , then, 

* *( min{ , })( min{ , }) 0.a a a b b b a b      

Lemma7. If ( )f Q  is P  uniform function and Lip-

schitz continuous, then, for 
k mnQ R  and 0k  , we have 

* 1

1 2) ( , )( ( .k k

k k kQ Q L L QR   ‖ ‖ )  

Proof. By Lemma 6, for any 
* *,k mnQ R Q X  , we get 
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that is,  
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Due to that ( )f Q is P  uniform function and Lipschitz 

continuous, we have 
*

* *

1

1 * *

1

1 *

2
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1 2

1 *

1 2
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That is,  
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Lemma 8. Suppose that ( )f Q  is P  uniform function 

and Lipschitz continuous. If (4) has the solution. Then, the 

solution is unique. 

Proof. Suppose that 
* *

1 2,Q Q  is any two solutions of (4), 

then, there exists 0 , such that 
* *

1 2

* * * *

1 2 1 2
1
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Thus, the solution of (4) is unique． 

Theorem 2. If Assumption 1 holds, and ( )f Q  is 

P  uniform function and Lipschitz continuous. Then, 

sequence { }kQ  generated by the Algorithm 1 is global 

R  linear convergence to the solution of (4). 

Proof. By (13) and Lemmas 7-8, we get 
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That is,  
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Select the appropriate parameter ,   such that  
2

1

2 1 22

(1 )
0 : (2 )( / )( 1,

2(
min{1

1
}

)
, c L L


    




    


)  

then, we have 0 1 1   . Thus, the sequence { }kQ  gen-

erated by the Algorithm 1 is global R  linear conver-

gence to the solution of (4). 

5 Conclusion 

In this paper, we study a nonlinear complementarity mod-

2015 ISORA 978-1-78561-086-8 ©2015 IET 19 Luoyang, China, August 21–24, 2015



el of the supply chain management problem. We propose 

a new type of algorithm for solving this model, and estab-

lished the global convergence of the algorithm under 

milder conditions. In addition, its global R-linear conver-

gence rate also proved with the underlying mapping being 

P-uniform function and Lipschitz continuous. In particular, 

our conditions required for the convergence of the pro-

posed algorithm are weaker than those proposed in [9, 11]. 

However, the conditions under which is the convergence 

of the algorithm is still too strong, it would be interesting 

to investigate whether there exists new algorithm for the 

problem is strictly weaker than those existing ones. These 

will be our further research directions. 
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