## Community Identification of Complex Network

## **Xiang-Sun Zhang**

http://zhangroup.aporc.org Chinese Academy of Sciences 2008.10.31, OSB2008

## Outline

- Background
- Community identification definition
- Community identification methods
- Modularity measures for network community
- Conclusion

## **Complex networks**

- Many systems can be expressed by a network, in which nodes represent the objects and edges denotes the relations between them.
- Social networks such as scientific collaboration network, food network, transport network, etc.
- Technological networks such as web network, software dependency network, IP address network, etc.
- Biological networks such as protein interaction networks, metabolic networks, gene regulatory networks, etc.

### Examples

- Yeast protein interaction network (A.-L. Barabási, o Football team network (S. White, P. NATURE REVIEWS GENETICS, 2004)
- Smyth, SIAM conference, 2004)





#### **Computer IP address network**



## Common topological properties

- small-world property: most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of steps
- scale-free property: degree distribution follows a power law, at least asymptotically. That is,  $P(k) \sim k^{-\gamma}$ , where P(k) is the fraction of nodes in the network having *k* connections to other and  $\gamma$  is a constant.

## Modularity/Community structure

• Modularity/Community structure : common to many complex networks. It means that complex networks consist of groups of nodes within which the connection is dense but between which the connection is relatively sparse.





## **Community structure**

- Nodes in a same tight-knit community tend to have common properties or attributes
- Modules/communities in biological networks or other types of networks usually have functional meaning

## **Community identification**

- Identifying community structure of a complex network is fundamental for uncovering the relationships between sub-structure and function of the network.
- In biological network research, it is widely believed that the modular structures are formed from the long evolutionary process and corresponds to biological functions.

## Community of complex networks



**Paper-cooperation network** 

**Phone network** 

## Significance of community structure

- Common functions of many complex networks
- Global network structure and function decomposition



Martin Rosvall, Carl T. Bergstrom, PNAS, vol. 105, no.4. 1118-1123, 2007 A network of science based on citation patterns: 6,128 journals connected by 6,434,916 citations.



The network is partitioned into 88 modules and 3,024 directed and weighted links, which represent a trace of the scientific activity.

## **Community identification definition**

- Given a network/graph N = (V, E), partition N into several subnetworks which satisfy community conditions
- In complex network research, a popular qualitative community definition is
  - The nodes in a community are densely linked but nodes in different communities are sparsely linked

Filippo Radicchi et. al. *Proc. Natl. Acad. Sci. USA (PNAS)*, Vol.101, No.9, 2658-2663, 2004

## Community detection methods

- Some methods are based on topological properties of nodes or edges such as betweenness-based methods (Girvan, Newman, PNAS, 2002)
- Some of them are clustering-based, e.g. various spectral clustering algorithms (S. White, P. Smyth, SIAM conference, 2004)

## **Community detection methods**

In Newman and Girvan, *PRE*, 2004, a modularity function *Q* was proposed as following

$$Q(P_k) = \sum_{c=1}^k \left[ \frac{L(V_c, V_c)}{L(V, V)} - \left( \frac{L(V_c, V)}{L(V, V)} \right)^2 \right]$$

to measure the community structure of a network.

• A class of methods maximizing modularity Q appear. Heuristic algorithms such as Simulated Annealing, Genetic Algorithms, Local Search, etc. [Newman, PNAS, 2006; Guimera, Nature, 2005].

## Overlapping/fuzzy communities

• In Palla et al., *Nature*, 2005, a clique- percolation method was proposed for community detection



• In Reichardt, Bornholdt, *PRL*, 2004, a Potts model was used for detecting fuzzy structure

#### Our work (I will not focus on)

- Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Identification of Overlapping Community Structure in Complex Networks Using Fuzzy c-means Clustering. *Physica A*, 2007, 374, 483–490.
- **O** Shihua Zhang, Rui-Sheng Wang and Xiang-Sun Zhang. Uncovering fuzzy community structure in complex networks. *Physical Review E*, 76, 046103, 2007
- Rui-Sheng Wang, Shihua Zhang, Yong Wang, Xiang-Sun Zhang, Luonan Chen. Clustering complex networks and biological networks by Nonnegative Matrix Factorization with various similarity measures. *Neurocomputing*, DOI: 10.1016/j.neucom.2007.12.043

Ο...

## Mathematical community definition

• Mathematically, let

$$d_i = d_i^{in} + d_i^{out}$$

then the condition for a subnetwork  $N_k = (V_k, E_k)$  being a community is

$$\sum_{i \in V_k} d_i^{in} - \sum_{i \in V_k} d_i^{out} > 0$$

i.e.

$$2|E_k| - |E_k| > 0$$

where  $E_k$  is all edges linking  $V_k$  and  $V \setminus V_k$ 

Filippo Radicchi et. al. *Proc. Natl. Acad. Sci. USA (PNAS)*, Vol.101, No.9, 2658-2663, 2004

- A popular method to partition a network into community structure is to optimize a quantity called modularity, or some alternatives, which is a measure for a given partition.
- Modularity definition and modularity optimization are still in the state-in-art process.

#### Modularity function Q

Newman and Girvan (*Physical Review E*, 2004) gives a quantitative measure Q

$$Q(N_1, \cdots, N_k) = \sum_{i=1}^k \left[ \frac{|E_i|}{|E|} - \left( \frac{d_i}{2|E|} \right)^2 \right]$$

where  $N_i, ..., N_k$  is a partition of N. We can prove  $2|E_i|-|\overline{E_i}| > 0 \implies Q(N_1,...,N_k) > 0$  But it is not necessary that

$$Q(N_1,...,N_k) > 0 \implies 2|E_i| - |E_i| > 0$$

It suggests that partition N into N1, ..., Nk such that Q(N1, ..., Nk) is as large as possible to make sure that

#### $2|E_i| - |E_i| > 0$ which leads to an optimization process below

• Step 1: Fix  $k \ (k = 1, ..., n), N_1 U ... U N_k = N,$ compute

$$\max_{N_1,\ldots,N_k} Q(N_1,\ldots,N_k)$$

• Step 2: Compute

 $\max_{k \in \{1,...,n\}} \max_{N_1,...,N_k} Q(N_1,...,N_k)$ 

This is an enumeration algorithm, then heuristic algorithms including simulation annealing, genetic algorithm are generally used (Newman, *PNAS*, 2006; Guimera, Nature, 2005).

## Modularity Q fails to identify correct community structure in some cases



Left: a graph consists of a ring of cliques connected by single links, each clique is a qualified community.

**Right: when the number of cliques is larger than about**, the more than about optimization gives a partition where two cliques are combined into one community! This phenomena is called resolution limit.

Fortunato & Barthelemy, Proc. Natl. Acad. Sci. (2007)

## Modularity Q fails to identify correct community structure in some cases



a graph consists of four cliques with different size, each clique is a qualified community.

when the clique size are quite heterogeneous, i.e. p<< m, the modularity optimization gives a partition where two small cliques are combined into one community!

#### We suggested a new quantitative measure

Modularity Density D:

$$D(N_1, \cdots, N_k) = \sum_{i=1}^k \left[ \frac{2|E_i|}{|V_i|} - \frac{|\bar{E}_i|}{|V_i|} \right]$$

which obviously has property:

 $2|E_i| - |E_i| > 0 \implies D(N_1, \dots, N_k) > 0$ 

Zhenping Li, Shihua Zhang, Rui-Sheng Wang, Xiang-Sun Zhang, Luonan Chen, Quantitative function for community detection. *Physical Review E*, 77, 036109, 2008



Modularity density *D* overcomes "resolution limit" problem in the cases of the ring of *L* cliques and the network with heterogeneous clique size



FIG. 2. Test of various methods on computer-generated networks with known community structures. It is a plot of the fraction of nodes correctly classified with respect to  $k_{out}$ . Each point is an average over 100 realizations of the networks.

## **Problem remained**

- Fortunato & Barthelemy, *PNAS* (2007), analyzed the "resolution limit" numerically based on some special network structures.
- Zhenping Li etc, *Physical Review E* (2008), suggested a new measure *D* and compare the modularity density *D* and modularity *Q* based on special network structures and numerical examples.
- A theoretical/mathematical framework to evaluate the different measures and display community structure properties is needed.

# A closed optimization model based on the modularity *Q*

Given a network N = (V, E), V = (v<sub>1</sub>, ..., v<sub>n</sub>), let (e<sub>ij</sub>) be the adjacency matrix. Suppose that N is partitioned into k parts N<sub>1</sub>, ..., N<sub>k</sub>. Use binary integer variable x<sub>ij</sub>:

$$x_{ij} = \left\{ egin{array}{ccc} 1 & ext{if node i is in community j} \ 0 & ext{otherwise} \end{array} 
ight.$$

The community definition then can be expressed as

$$\sum_{s,t\in V} e_{st} x_{sj} x_{tj} \ge \sum_{s,t\in V} e_{st} x_{sj} (1 - x_{tj})$$

For j=1,2,...,k

#### Optimization model based on Q

• A nonlinear integer programming based on Q

$$\max \quad \sum_{j=1}^{k} \left[ \frac{\sum_{s,t \in V} e_{st} x_{sj} x_{tj}}{\sum_{(s,t) \in E} e_{st}} - \left( \frac{\sum_{s,t \in V} e_{st} x_{sj}}{\sum_{(s,t) \in E} e_{st}} \right)^2 \right]$$
  
s.t. 
$$\sum_{j=1}^{k} x_{ij} = 1, \quad i = 1, \cdots, n$$
$$x_{ij} \in \{0, 1\}, \quad i = 1, \cdots, n, \quad j = 1, \cdots, k$$

Xiang-Sun Zhang and Rui-Sheng Wang, Optimization analysis of modularity measures for network community detection, *OSB 2008*.

#### Optimization model based on D

• A nonlinear integer programming based on D

$$\max \quad \sum_{j=1}^{k} \left[ \frac{\sum_{s,t \in V} e_{st} x_{sj} x_{tj}}{\sum_{t \in V} x_{tj}} - \frac{\sum_{s,t \in V} e_{st} x_{sj} (1-x_{tj})}{\sum_{t \in V} x_{tj}} \right]$$
s.t. 
$$\sum_{j=1}^{k} x_{ij} = 1, \ i = 1, \cdots, n,$$

$$x_{ij} \in \{0, \ 1\}, \ i = 1, \cdots, n, \ j = 1, \cdots, k$$

Xiang-Sun Zhang and Rui-Sheng Wang, Optimization analysis of modularity measures for network community detection, *OSB 2008*.

# Convex analysis based some special structures

The following two exemplar networks are used in almost all *PNAS* papers that discuss the community identification



Figure 1: Diagrams of two exemplary networks.

#### A ring of dense lumps whose adjacency matrix is:

where L > 4, *A* is an *m* x *m* adjacency matrix to represent a connected subnetwork called as lump, then *AL* is an *Lm* x *Lm* matrix, *M* stands for a random matrix with *s* non-zero elements. Note that these random matrices don't have to be identical, provided that they have the same number of non-zero elements. The second exemplary network is a special version of the *ad hoc* network (a computer-generated network). Its adjacency matrix takes the form:

|         | 1 | A | М | М |  | М | М | M   |
|---------|---|---|---|---|--|---|---|-----|
|         |   | M | Α | М |  | М | М | Μ   |
|         |   | M | М | Α |  | М | М | М   |
| $4^L =$ |   |   |   |   |  |   |   |     |
|         |   |   |   |   |  |   |   |     |
|         |   | M | М | М |  | Α | М | Μ   |
|         |   | M | М | M |  | M | Α | М   |
|         | l | M | М | М |  | М | М | A / |

Denote a partition as  $P = \{V_1, \dots, V_K\}$ , the optimization process can be written as a two-stage optimization problem:

$$Q_p : \max_k \bar{Q}(k) = \max_k \max_{\sum_{i=1}^k |V_i|=n} Q(V_1, V_2, \cdots, V_k);$$

$$D_p: \max_k \bar{D}(k) = \max_k \max_{\sum_{i=1}^k |V_i|=n} D(V_1, V_2, \cdots, V_k);$$

We denote  $\overline{Q}_{\mathbf{k}}(\mathbf{k})$  as  $\overline{\mathbf{D}}_{\mathbf{k}}(\mathbf{k})$  lutions from the first-step optimization problems: with a fixed k, partition the whole network into k subnetworks  $N_1 = (V_1, E_1), \dots, N_k = (V_k, E_k)$  to maximize the quantitative functions Q and D. And and are the second-step optimization promans  $\overline{Q}(k)$   $\max_k \overline{Q}(k)$ 

#### **Convex Analysis**

- A function (or a programming) whose variables take discrete values (or, say, the sample values) is called as discrete convex (concave) function (or programming) if they can be embedded into a continuous convex (concave) function (or programming).
- **Result 1 :** For the ring of A,

 $\max_{\sum_{i=1}^{k} |V_i|=n} Q(V_1, V_2, \dots, V_k) \quad \text{ is a discrete concave programming}$ 

 $\max_{\sum_{i=1}^{k} |V_i|=n} D(V_1, V_2, \dots, V_k) \quad \text{ is a discrete concave programming}$ 

- $\overline{Q}(k)$  is a discrete convex function
- $\overline{D}(k)$  is a discrete convex function

#### **Convex Analysis (continued)**

• Result 2 : For the *ad hoc* network,  $\max_{\sum_{i=1}^{k} |V_i|=n} Q(V_1, V_2, \dots i_k V_k) \text{ discrete concave programming}$ 

 $\max_{\sum_{i=1}^{k} |V_i|=n} D(V_1, V_2, \dots, V_k) \text{ linear programming}$ 

 $\overline{Q}(k)$  discrete convex function  $\overline{D}(k)$  linear function

Above analysis makes it possible that we solve the two exemplar networks analytically, then compare *Q* and *D* analytically.

#### **Convex Analysis (continued)**

#### **Result 3 :**

• for the ring of *A* where each *A* is the smallest community (known community), the modularity density model *D* can identify the known communities. But the modularity model *Q* fails if

$$s > \frac{|E|}{L-1}$$

which extends the result in Fortunato & Barthelemy, *Proc. Natl. Acad. Sci.* (2007) where *s* takes 1.

#### Further research in community identification

- The closed formulation of the *Q* and *D* optimization allows to design more efficient algorithm to solve the community identification problem
- Based on the comparison of *Q* and *D*, present new measures that exactly reflect the community definition
- Consider modularity measures in directed networks

Thanks

#### Welcome to visit us at

## http://zhangroup.aporc.org