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Abstract—Traditional drug development is time and cost 

consuming process, conversely, drug repositioning is an emerging 

approach to discover novel usages of existing drugs with a better 

risk-versus-reward trade-off. Computational technology is 

playing a key role in drug repositioning to screening the best 

drug repositioning candidates from a large candidate library. 

Recent efforts made for computer aided drug repositioning are 

mostly focusing on applying/developing data mining algorithms 

against wild type of large scale of biomedical data. In this paper, 

we introduce a novel computational pipeline designed for drug 

repositioning candidate screening based on existing phenotypical 

association (disease-disease association) discovery and pathway 

enrichment analysis by exploring systems biology data relevant 

to the interested phenotypical association specifically. To 

demonstrate usability and evaluate efficacy of this novel pipeline, 

we successfully conducted a case study by identifying potential 

drug repositioning candidates for Alzheimer’s disease (AD) 

based on the studied phenotypical association between cancer 

and AD. 

Keywords—drug repositioning, phenotypical association, 

pathway enrichment analysis, systems biology 

I. INTRODUCTION  

By conservative estimates, it now takes about 15 years [1] 
and around $800 million to $1 billion to make a new drug to 
market[2], although drug development life cycle has 
significantly declined in recent decades owing to fast growth in 
drug research and development (R&D) such as chemical 
genomics technologies [3] [4] and chemical libraries[5] [6]. In 
another hand, an emerged novel strategy, discovering 
alternative usages for existing drugs, or drug repositioning, has 
been applied for decades[7]. While drug repositioning offers a 

better risk-versus-reward trade-off solution compared to 
traditional drug development, current successes in drug 
repositioning have primarily been the result of serendipity or 
clinical observations[8], such as the observed usefulness of 
sildenafil for erectile dysfunction and pulmonary arterial 
hypertension[9], as well as the new indications, including 
leprosy[10]  and multiple myeloma[11] for thalidomide[12]. 
Systematic approaches by applying computational technologies 
have more capabilities to explore additional repositioning 
opportunities. 

As the ability to measure molecules in high-throughput 
ways has improved over the past decade, it is logical that such 
data might be useful for enabling drug repositioning through 
computational methods. Many computational predictions for 
new indications have been borne out based on either drug or 
disease orientated strategies[13], and they are focusing on 
leveraging a large-scale of data and advanced informatics 
approaches to identify possible candidates for drug 
repositioning purpose. Such as, Andronis ed. al [14] have 
attempted to “integrate literature mining with other types of 
data arising from the use of these technologies as well as 
visualization tools assisting in the discovery of novel 
associations between existing drugs and new indications”; 
More other work by applying informatics approaches and 
machine learning prediction to detect novel usages of existing 
drugs from a large volume of chemical, biological data, 
genomic  data, etc. has been published. [15-18] Although 
applying wild type of data gives more room for more 
possibilities to identify drug repositioning candidates, but it 
may not be the best way to seek repositioning candidates 
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Figure 1. Drug repositioning pipeline  

 

Figure 2. Pathway examples

driven by specific interests, especially for finding drugs that 

can be repositioned for certain types of interested disease, such 

as cancer, depression. As we know underneath mechanism of 

drug repositioning is to manage associations between one drug 

and two types of disease, for example, determining whether 

one drug used for disease A can also be used for disease B. 

Thus starting with data that is relevant to one interested 

phenotypical association between disease A and disease B, will 

obviously provide more opportunities with higher successful 

repositioning rate. For instance, existing evidence is shown that 

cancer and Alzheimer’s disease (AD) has association (more 

details can be found in Section 4 - case study), which allows us 

to mine data specifically related to cancer and AD, and 

consequently to find alternative drugs, either cancer drugs that 

were avoided in the case study presented in this study as cancer 

drugs with higher toxicity may not be suitable for older people 

or cancer related drugs for AD treatment. In this study, we 

introduce a phenotypical evidence based drug repositioning 

pipeline.  

Pathways comprising genes and proteins may account for 

biological processes or diseases, which could be affected by a 

drug interacting with its pharmacological targets. Therefore, 

the pharmacological or clinical effects of a drug may be 

elucidated by analyzing the pathways enriched by drug targets 

with affinities or being affected by the studied drug candidates. 

There are some works being published recently by exploring 

pathway information for drug repositioning, Li et al.[19] 

developed a computational method for discovering new uses of 

existing drugs based on casual inference in a layered drug-

target-pathway-gene-disease network. They simultaneously 

considered all possible causal chains connecting drugs to 

diseases via target- and gene-involved pathways. Pan et al. [20] 

investigated sixteen FDA-approved drugs for their mechanisms 

of action (MOAs) and clinical functions by pathway analysis 

based on retrieved drug targets interacting with or affected by 

the investigated drugs. They have illustrated some alternative 

therapeutic usages being found for these 16 drugs in their study. 

These published works started from interested drugs and 

attempted to find enriched pathways to these drugs, ultimately 

identify possible alternative therapeutic treatments for these 

drugs. In our work, we integrated a pathway enrichment 

analysis component into the drug repositioning pipeline. From 

those enriched pathways corresponding to the interested 

phenotypes, we will be able to identify drug repositioning 

candidates.  

In this paper, we present our development and experiment 
for a novel computational drug repositioning pipeline. We 
begin with phenotypical association discovery, step-wise 
pathway enrichment analysis along with data preparation, to 
ultimately generate drug repositioning candidate library for the 

2014 The 8th International Conference on Systems Biology (ISB)
978-1-4799-7294-4/14/$31.00 ©2014 IEEE

211 Qingdao, China, October 24–27, 2014



 

 

interested phenotype. Details for each step with an example are 
described as below.  

II. DRUG REPOSITIONING CANDIDATE SCREENING PIPELINE 

DESIGN  

In this study, we introduced a generic drug repositioning 
screening pipeline designed for drug repositioning candidate 
screening based on established phenotypical associations. 
Specifically, this pipeline is consisting of several components, 
1) phenotypical association identification via either literature 
scan, EHR data analysis, or other well-studied evidence; 2) 
systems biology data collection from known data resources, 
such as pharmacogenomics data, particularly for genes and 
pathways relevant to the phenotypical association identified 
from the first component; In parallel, human gene reference 
repository is built for further pathway enrichment analysis; 3) 
pathway enrichment analysis to identify possible drug 
repositioning candidates. Drug repositioning pipeline is shown 
in Figure 1 (shown in the last page). We will describe details in 
the following sections for each individual component. 

A. Phenotypical evidence identification  

There are multiple ways to identify possible phenotypical 
associations, either from literature, EHR data, or even from 
social media. In this paper, we will emphasize with literature 
and EHR, along with the case study by exploring literature data. 

Literature provides a comprehensive published resource to 
identify possible phenotypical associations. Besides manually 
reviewing and automatically processing via Natural Language 
Processing from literature, Semantic Medline [21] is a 
centralized database of semantic predications from all PubMed 
citations. It includes associations among different nodes, such 
as drugs, genes, diseases and etc. The predicates express the 
associations identified from the literature between two nodes, 
for example, interacts_with, inhibit, stimulates, etc. 
Associations between two types of diseases can be identified 
and labeled with a PubMed identifier as reference.  

Electronic Health Records (EHR) maintains a wide 
spectrum of patient information, including billing data, 
laboratory test results, medication records, clinical 
documentation and imaging results. It is likely that 
phenotypical associations can be identified from EHR via 
longitudinal patient data scan and analysis. For instance, Hua 
Xu et al. [22] has reported that metformin used to control blood 
sugar in patients with type 2 diabetes had better 5-year cancer 
survival rates compared to diabetic patients taking other 
diabetes medications for diabetic patients by linking a tumor 
registry to a large EHR database. While the authors have 
illustrated that metformin could be one drug repositioning 
candidate for cancer, such possible phenotypical association 
identified from EHR, diabetes and cancer can be applied into 
our designed pipeline, not only for finding further evidence to 
support the above finding, also identifying more possible 
candidates, besides metformin. 

B. Recommended systems biology data resources 

Pathway information including pathway names along with 
associated gene sets is recommended to be collected from 
Molecular Signatures Database (MSigDB) [23], which is a 

collection of annotated gene sets for use with GSEA software. 
Each pathway includes pathway name with embedded source 
name, a web link to MSigDB for more details about pathways 
and a list of genes involved. For instance, 
“BIOCARTA_RELA_PATHWAY” reflects to the pathway 
named “RELA” from BioCarta. More examples extracted from 
MSigDB are shown in Figure 2 (in the last page). Three major 
pathway resources listed below are included in MSigDB. 

Kyoto Encyclopedia of Genes and Genomes (KEGG)[24]  
is a collection of manually drawn pathway maps expressing 
knowledge regarding to the molecular interaction and reaction 
networks, especially for  Metabolism, Genetic Information 
Processing, Environmental Information Processing, Cellular 
Processes, Organismal Systems, Human Diseases, Drug 
Development. 

Reactome[25] is a manually curated and peer-reviewed 
pathway database. Pathway annotations are authored by 
biological experts, in collaboration with Reactome editorial 
staffs and cross-referenced to many bioinformatics databases. 
The core unit of the Reactome data model is the reaction. 
Entities (nucleic acids, proteins, complexes, vaccines, anti-
cancer theraputics and small molecules) participating in 
reactions form a network of biological interactions and are 
grouped into pathways. 

Biocarta[26] contains a large number of pathways in 
organisms. Each pathway comes with a detailed description in 
text format, which gives more information and additions to the 
graphical representation, and helps to understand the pathway 
better. The graphical representations of pathways also contain 
the chemical structure of the substance involved.  

C. Gene-disease association identification 

In order to collect genes relevant to two different diseases 
according to the phenotypical association identified from 
section 2.1, pharmacogenomics data and well-known 
predictive data are recommended as target resources, from 
where we can extract interested gene information. Some of 
recommended data resources are shown below. Ultimately, a 
centralized gene set, will be generated from these resources 
relevant to the identified phenotypical association specifically.  

Pharmacogenomics Knowledge Base (PharmGKB)[27] 
contains genomic, phenotype and clinical information collected 
from pharmacogenomics (PGx) studies. It provides 
information regarding variant annotations, drug-centered 
pathway, pharmacogenomic summaries, clinical annotations, 
PGx-based drug-dosing guidelines, and drug labels with PGx 
information.  

DrugBank [28] is a unique bioinformatics and 
cheminformatics resource that combines detailed drug (i.e. 
chemical, pharmacological and pharmaceutical) data with 
comprehensive drug target (i.e. sequence, structure, and 
pathway) information.  

CellMiner™ [29] is a web application that facilitates 
systems biology through the retrieval and integration of the 
molecular and pharmacological data sets for the NCI-60 cell 
lines. CellMiner provides pattern comparisons for a given list 
of drugs and genes, and produces an output matrix that 
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includes correlated drugs and genes for each of drugs and 
genes from the query list along with corresponding calculated 
correlation values. By default, CellMiner returns significantly 
correlated entities (correlation value > 0.5) for a given query 
drug or gene. 

D. Reference gene pool 

In order to conduct enrichment analysis, a reference gene 
pool including all annotated human genes in HG 19 needs to be 
prepared.  

E. Pathway enrichment analysis 

Hypergeometric test is being applied for pathway 

enrichment analysis to identify possible drug repositioning 

candidates with significant correlations to phenotypical 

associations from enriched pathways. A five-step approach to 

perform hypergeometric test is proposed as below. 

1) To ensure the reference gene pool (section 2.D) is a 

superset of the centralized gene set generated in section 

2.C for pathway enrichment analysis, all genes from this 

centralized gene set should be mapped to the reference 

gene pool and all genes that were not included in the 

reference gene pool should be excluded. A gene set 

consisting of the remaining genes from the centralized 

gene set is called as CN_Gene. 

2) For each pathway, a number of involved genes is counted 

and called as N_gp. Meanwhile, a number of genes from 

each pathway mapped to the genes from the CN_Gene is 

counted and called as N_gpm.  

3) From the reference gene pool, we randomly select a 

subset of genes called as Sub_Gene with the same number 

as N_gpm for each pathway 1000 times. A number of 

genes from the Sub_Gene being mapped to CN_Gene is 

counted as N_gsm. 

4) Number of times (N_t) that N_gsm is equal or greater 

than N_gpm, is calculated.  

5) To prioritize and evaluate the significance for enriched 

pathways to AD and cancer, we calculated P value by 

N_t/1000. 

Pathways can be ranked based on P_values. The pathways 

with smaller P_values, except for 0, are considered as 

enriched pathways for the phenotypical associations. For 

certain use cases, we can customize a cutoff P_value to 

customize the enriched pathway list. 

F. Drug repositioning candidate screening 

A list of drugs that are extracted from those enriched 
pathways consists of possible drug repositioning candidate 
library. There are two ways to extract drugs or chemicals from 
the pathways. First of all, KEGG and Reactome provide drug 
and chemical list that are involved in the pathways, and then it 
will be easy to extract those chemicals and drugs directly. 
Biocarta provides image and description for each pathway, and 
manual process will be required, for example, reviewing the 
image and description to identify chemicals/drugs from the 
pathways. For those pathways without chemical/drug 
information, the alternative means will be proposed to search 

for corresponding drugs to those genes available in the 
enriched pathways from the collected systems biological data. 

Case study – drug repositioning candidates library 
generation for Alzheimer’s disease (AD) 

AD is an irreversible, progressive brain disease that slowly 
destroys memory and thinking skills, and eventually even the 
ability to carry out the simplest tasks. In most people with AD, 
symptoms first appear after age 60. Experts suggest that as 
many as 5.1 million Americans may have AD. However, there 
is no cure for AD currently. Drug and non-drug treatments may 
help with both cognitive and behavioral symptoms. 
Researchers are looking for new treatments to alter the course 
of the disease and improve the quality of life for people with 
AD. Currently there are only 4 FDA approved drugs, donepezil, 
galantamine, memantine, rivastigmine being used for AD. In 
this study, we aimed to identify possible alternative drugs may 
be drug repositioning candidates for AD by applying the drug 
repositioning pipeline introduced in this paper. We will go over 
all steps from phenotypical association discovery for AD, to 
drug repositioning candidate screening for AD in the following 
sections. 

G. Pheotypical association identification for AD   

A study presented at the Alzheimer's Association 
International Conference® 2013 (AAIC® 2013) hold in 
Boston, including 3.5 million veterans reported that people 
who develop cancer appear to have a significantly reduced risk 
of developing AD, especially those who have had 
chemotherapy treatment[30]. Many other studies also 
supported such phenotypic association from different angles. 
White et al. [31], in a population-based longitudinal study 
recruiting 1,102 adults with a mean age of 79 years, showed 
that individuals older than 70 years of age with non-melanoma 
skin cancer had a significantly reduced risk of developing AD 
compared with those without non-melanoma skin cancer. 
Kamal  et al. [32] revealed that NO(Nitric Oxide)-dependent 
abnormal mitochondrial activities and mitotic cell division are 
the important pathogenic factors in cancer and AD. Hedskog et 
al. [33] discovered that abnormal mitochondrial function was 
present in AD and cancer. Furthermore, some studies suggest 
chemotherapy may be beneficial for AD treatment. For 
instance, Cramer et al. [34] found that FDA approved 
anticancer drug bexarotene could be potentially used for AD 
treatment based on molecular pathway examination and 
analysis. Wang et al. [35] carried out a behavior screen in an 
AD fruit fly model and discovered that,  the flies’ memory 
improved after just two months of treatment of EGFR 
inhibitors (cancer drugs). In 2013, Araki [36] published a 
commentary on the potential of repositioning  cancer drugs for 
the treatment of AD. 

To get more proof for the studied phenotypical association 
between AD and cancer from a large biomedical literature 
repository, we searched for genes and drugs that relevant to 
AD and cancer from Semantic MEDLINE. The results are 
shown in Table 1. Clearly, there are large overlaps between 
genes associated with AD and cancer, and drugs associated 
with AD and cancer. However, the proportion of the overlaps 
is still quite small compared to the total number of genes and 
drugs. It is evident that the existence of this connection has 
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been supported by published studies, but the number of reports 
to investigate this connection is still fairly small, especially 
from informatics perspective. There are huge potentials to 
develop relevant studies to generate more evidence to support 
this phenotypical association from informatics point of view, 
which can guide experimental study design accordingly. The 
body of research outlined in this present paper leads to a 
hypothesis that connections between cancer and AD may show 
evidence to identify drug repositioning candidates for AD. This 
study demonstrates our desire and resources available to test 
this hypothesis.   

TABLEⅠ . STATISTICAL SEARCH RESULTS FROM SEMANTIC MEDLINE 

 

H. Systems biological data collection 

Pathway set collection We downloaded the curated gene 
sets for pathways from KEGG, Reactome and BioCarta that are 
available at MSigDB by March 24, 2014. We collected 
pathway information consisting of pathway names along with 
associated gene sets from MSigDB. Total 186 KEGG 
pathways, 430 REACTOME pathways, and 217 BIOCARTA 
pathways have been retrieved from MSigDB and applied into 
this study subsequently. 

Gene set collection We collected gene sets that are 
associated with cancer and AD. More specifically, four groups 
of gene sets have been retrieved, AD genes, cancer genes, AD 
related genes, and cancer related genes.  

AD genes: we manually identified AD associated genes 
from four resources, PharmGKB [37], WikiPedia[38], NIH 
resource[39] and Literature[40]. Total 37 AD genes have been 
identified. 

Cancer genes: Bushman lab [41] at university of 
Pennsylvania, has collected cancer related genes. All lists have 
been reconciled with current HGNC or NCBI gene IDs where 
outdated synonyms were used. We downloaded this 
comprehensive list of cancer related genes called allOnco for 
this study. 2,129 cancer genes have been extracted from 
allOnco table. 

AD related genes: We explored CellMiner to identify genes 
with similar gene expression profile to AD genes. CellMiner 
produces an output matrix including correlated genes with 
correlation value. We extracted all genes with correlation value 
greater than 0.5 for each AD genes. Out of total 22,647 genes 
extracted from CellMiner, 3,739 genes significantly correlated 
(correlation value > 0.5) to 34 AD associated Genes were 
extracted from CellMiner output matrix. It notes that there are 
no correlated genes found for three AD genes, NME8, 
SCL24A4, and TERM2 from CellMiner. It is worthy to note 
that there are no correlated results generated for four AD drugs 
from CellMiner. 

Cancer related genes: Total 128 unique cancer drugs with 
synonymies have been extracted from Medilexicon [42] by 
Nov. 16, 2013. To identify genes associated with those cancer 
drugs, we explored PharmGKB by May 8, 2013, which 
provides high quality of associations among drug, gene, 
disease, SNP and haplotype. We programmatically searched 
relevant genes for those 128 cancer drugs by using string 
matching with drug names and synonymies based on the drug-
gene pairs available at PharmGKB relationship file. In parallel, 
we downloaded “External Links” and “Drug Target Identifiers” 
files from DrugBank by April 22, 2014 to identify genes that 
are associated with cancer drugs from DrugBank. We searched 
for cancer drug related genes via two steps from DrugBank, 
converting drug names to DrugBank identifiers based on 
“External Links” file and identifying relevant genes from “drug 
target identifiers” file by parsing the DrugBank identifiers. For 
the unmapped drugs with PharmGKB and DrugBank, we 
manually searched for relevant genes from literatures.  In 
summary, we programmatically extracted 249 

unique genes for 58 unique cancer drugs from PharmGKB 
and 134 unique genes for 96 unique cancer drugs from 
DrugBank. Combining the searching results from these two 
resources, total 346 unique genes have been found for 101 
unique cancer drugs. Aggregating searching result based on 
manually literature review, total 412 unique genes for 115 
cancer drugs have been applied in this study. 

We generated a centralized gene set by combing the above 
four gene sets. 

Reference gene pool generation 25,237 human genes were 
collected to consist of a human gene pool. 

Table 2 summarizes number of genes from different gene 
collections listed as above have been applied in this study. 

TABLE Ⅱ. NUMBERS OF GENES BEING APPLIED IN THIS CASE STUDY 

Gene collections Total # 

genes 

# genes covered by the 

reference gene pool 

AD genes 37 35 

Cancer genes 2,129 1,975 

AD related genes 3,739 3,045 

Cancer related genes 412 241 

Human gene pool 25,237 

I. Pathway enrichment analysis  

To conduct enrichment analysis, we followed the step 
introduced in section 2.E. First of all, we removed genes from 
the centralized gene set that were not included in the reference 
gene pool and mapped them to gene sets for each pathway 
identified in section 3.B (pathway set collection). Finally, a 
centralized gene set has been downsized to 4,688 unique genes 
that relevant to AD and cancer. 

The centralized gene set and the human gene reference pool 
have been applied for pathway enrichment analysis to identify 
significant correlated pathways to AD and cancer by following 
the steps 2-5 described in section 2.E. Each pathway has been 
assigned a p value indicating the significance to AD and cancer. 
By excluding those pathways with p-value equaling to 0 and 
greater than 0.05, total 193 pathways were selected for this 
case study. From there, drug repositioning candidate library for 
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AD can be generated to include drugs involved or associated 
with those pathways. 

J. Evaluation 

To evaluate and test our hypothesis – possible drug 
repositioning candidates can be screened out from the enriched 
pathways to AD, we selected top 24 enriched pathways with p-
Value = 0.001, which include 3 pathways from KEGG, 10 
from Biocarta, and another 11 from Reactome.  The list of 
those 24 enriched pathways is shown in Table 3. From these 
pathways, we manually extracted available drugs/chemicals. It 
is worthy to note that not all pathways include chemicals/drugs. 
There are total 110 chemicals/drugs. KEGG and Reactome 
provide drug and chemical list that are involved in the 
pathways, and then we extracted those chemicals and drugs 
directly, and we manually reviewed the image and description 
of pathways from Biocarta to identify chemicals/drugs.  

TABLE Ⅲ. THE LIST OF TOP 24 ENRICHED PATHWAYS 

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES 

KEGG_PRION_DISEASES 

KEGG_AMYOTROPHIC_LATERAL_SCLEROSIS_ALS 

BIOCARTA_NO1_PATHWAY 

BIOCARTA_ASBCELL_PATHWAY 

BIOCARTA_CD40_PATHWAY 

BIOCARTA_GCR_PATHWAY 

BIOCARTA_SKP2E2F_PATHWAY 

BIOCARTA_IL5_PATHWAY 

BIOCARTA_IL10_PATHWAY 

BIOCARTA_IL12_PATHWAY 

BIOCARTA_PTDINS_PATHWAY 

BIOCARTA_BARR_MAPK_PATHWAY 

REACTOME_G2_M_TRANSITION 

REACTOME_HDL_MEDIATED_LIPID_TRANSPORT 

REACTOME_NEURORANSMITTER_RECEPTOR_BINDING_AND_ 

DOWNSTREAM_TRANSMISSION_IN_THE_POSTSYNAPTIC_CELL 

REACTOME_NOTCH_HLH_TRANSCRIPTION_PATHWAY 

REACTOME_NUCLEOTIDE_EXCISION_REPAIR 

REACTOME_PLATELET_ADHESION_TO_EXPOSED_COLLAGEN 

REACTOME_PLC_BETA_MEDIATED_EVENTS 

REACTOME_SHC_RELATED_EVENTS 

REACTOME_SIGNALING_BY_NOTCH 

REACTOME_CREB_PHOPHORYLATION_ 

THROUGH_THE_ACTIVATION_OF_RAS 

REACTOME_POST_NMDA_RECEPTOR_ACTIVATION_EVENTS 

 

Case 1. Biliverdin and Bilirubin are two chemicals inlcuded in 

“10 Anti-inflammatory Signaling Pathway” from Biocarta. 

Biliverdin and Bilirubin are green tetrapyrrolic bile pigments 

that naturally possess significant anti-mutagenic and 

antioxidant properties and therefore fulfill a useful 

physiological function[43]. Biliverdin and bilirubin have been 

shown to be potent scavengers of peroxyl radicals.[43, 44] 

They have also been shown to inhibit the effects of polycyclic 

aromatic hydrocarbons, heterocyclic amines, and oxidants. 

Studies have reported that people with higher concentration 

levels of bilirubin and biliverdin in their bodies have a lower 

frequency of cancer and cardiovascular disease[44].  

In another hand, oxidative damage has been shown to be a 
factor in Alzheimer's disease (AD), and some studies have 
suggested that supplemental anti-oxidants can decrease the risk 
of AD or slow its progression. There are many candidate 
antioxidants, including combinations, which could be 
neuroprotective in established AD or could have efficacy in the 
prevention of AD. Biliverdin and Bilirubin could be the ones as 
candidate antioxidants for AD treatment. Barone et al. has 
illustrated that “Biliverdin reductase-A (BVR-A) is a 
pleiotropic enzyme and plays pivotal role in the antioxidant 

defense against free radicals as well as in cell homeostasis. 
Together with heme oxygenase, BVR-A forms a powerful 
system involved in the cell stress response during 
neurodegenerative disorders including Alzheimer's disease 
(AD), whereas due to the serine/threonine/tyrosine kinase 
activity the enzyme regulates glucose metabolism and cell 
proliferation”[45]. One clinical trial “Anti-Oxidant Treatment 
of Alzheimer's Disease” has been done to examine the safety 
and effectiveness of two anti-oxidant treatment regimens in 
patients with mild to moderate Alzheimer's disease[46]. 

Case 2. Dabigatran is one of drugs included in 
“COMPLEMENT AND COAGULATION CASCADES” 
pathway from KEGG. Dabigatran is an oral anticoagulant drug 
that acts as a direct thrombin (factor IIa) inhibitor[47]. 
Dabigatran can be used for the prevention of stroke in patients 
with atrial fibrillation. The drug was developed as an 
alternative to warfarin [47]. In addition, scientists recently 
found that dabigatran as direct thrombin inhibitors, “might be 
efficient in the treatment of patients with AD because of their 
high selectivity for thrombin’s activity inhibition while having 
a safer side effects profile than heparin.”[48] Ramasamy et al. 
[49] has also investigated the effectiveness of dabigatran in 

treating AD, Figure 3 shows the rationale they proposed in 
their paper, which presented the pathway how dabigatran can 
contribute to the development of AD. Other studies have made 
the same statements, such as “Dabigatran reduces expression of 
HIF-1α, thrombin, IL-6, MCP-1, and MMP2 in the brains of 
AD transgenic mice. Generation of ROS in AD mice and 
hypoxic endothelial cell cultures is inhibited by 
dabigatran”[50]. 

Among 110 chemicals/drugs, we evaluated 3 above 
chemicals/drugs as potential drug repositioning candidates for 
AD treatment based on existing studies and clinical trials. 
However, other chemicals/drugs can be served as new drug 
repositioning candidates that are worthy to be investigated 
further for repositioning purpose. 

III. DISCUSSION 

This study was aiming to build phenotypical evidence 

based computational drug repositioning candidate screening 

pipeline, along with a case study to demonstrate the capability 

of this pipeline to screen possible drug repositioning candidates 

for AD treatment. In the case study, given the fact of 

phenotypical association between AD and cancer, we 
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successfully identified drug candidates from pathways that are 

significantly correlated to AD and cancer by performing 

pathway enrichment analysis. This approach dramatically 

decreased the traditional searching space and increased the 

success rate to identify drug repositioning candidates for AD. A 

drug repositioning candidate library has been generated by the 

presented approach, followed by the evaluation - manual 

evidence identification.  

 

Figure 3. The rationale supporting dabigatran’s contribution to AD 

development  (Adopted from [49])  

To validate our approach with different reference gene pool, 
we performed the same approach by using a different reference 
gene pool consisting of genes extracted from all selected 
pathways, and we have received similar results. As genes from 
pathways are more significantly relevant to AD and cancer, the 
number of enriched pathways is much larger comparing to use 
human genes as a reference gene pool. To avoid such 
unexpected increase of the number of enriched pathways, we 
decided to apply human genes as reference gene pool.  

As following, we will discuss the benefits gained and 
consequent findings sought from this study, as well as 
limitations we observed from this study and subsequent future 
work.  

Benefits gained 

The current scenario of computational drug repositioning is 
based on a large scale of wild type of data to find possible drug 
repositioning candidates. Conversely, our strategy was driven 
by the existing phenotypical associations that provide solutions 
to find drug repositioning candidates for specific disease. For 
example, investigation conducted upon the data retrieval driven 
by the existing phenotypical association between AD and 
cancer demonstrates its capability of identifying possible drug 
repositioning candidates for AD specifically. Meanwhile, this 

approach not only increases the success rate for drug 
repositioning candidate discovery as it is supported by the 
existing studied phenotypical associations, but also it 
dramatically decreases size of the drug repositioning candidate 
screening pool as only drugs/chemical compounds included in 
the enriched pathways that are associated with interested 
diseases will be selected.  

Drug repositioning candidates can be identified by applying 
our computational pipeline introduced in this paper via 
different ways, 1) we can directly look for candidates based on 
phenotypical associations. For example, searching for possible 
candidates repositioned for AD treatment against cancer drug 
pool. However, if we consider the toxic nature of the cancer 
drugs that may be not the best choice for elderly who has been 
diagnosed with AD, then we are able to switch to an alternative 
way, 2) we can look into the common pathways relevant to the 
interested phenotypical association, such as AD and cancer. 
Then we can find possible drug candidates from those 
pathways. Moreover, 3) it will be very easy to integrate other 
relevant resources to the information identified for the 
phenotypical association specifically into a network and 
conduct network analysis for drug repositioning candidate 
discovery. 

Drug repositioning candidates identified from our pipeline 
will not only include ones have already been studied, which 
serves as evidence to demonstrate the efficacy and performance 
of our pipeline, but also include more novel candidates that 
have not been investigated before. Those novel findings will be 
the main contribution to the drug repositioning field as that 
may provide more new hints leading new discovery. 

Limitations observed. 

While we successfully demonstrated the promising findings 
and performance of this study, we observed some limitations of 
this study, and proposed relevant future work plan.  

1) In the case study, our focus was identifying significant 
gene sets to AD and cancer and conducting pathway 
enrichment analysis to seek enriched pathways. We manually 
browsed the content of the enriched pathways and extracted 
annotated drug and chemical concepts, from which drug 
repositioning candidates for AD can be identified. For 
demonstration purpose, manual process provides high quality 
of identification results, but also it offers more guidance for 
future candidate identification from huge volume of data, for 
instance, more pathways from additional resources, like 
PharmGKB, wikiPathway and more reference gene sets 
extracted from pathways. At the time of increasing number of 
enriched pathways, systematical drug repositioning  candidate 
identification process will be established, including automated 
drug/chemical extraction from pathways by applying Nature 
Language Processing (NLP) and prioritizing candidates by 
leveraging evaluation (discuss more in the next paragraph) and 
evidence found from the literature. 

2) In this study, we manually identified drug repositioning 
candidates from the enriched pathways and found relevant 
evidence by reviewing literature. However, we were not 
employing further automated evaluation process to validate the 
possibility of repositioning that is beyond the scope of this 
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study, and is the future plan to design a computational 
application for drug repositioning by applying this presented 
approach in an automatic way. More specifically, EHRs 
maintain huge volume of patient medical information, such as 
current/past medication and diagnosis information. From there, 
we can conduct longitudinally retrospective study to find out 
the possibility of the identified drug candidates being used for 
real patients. Meanwhile, drug candidates identified for AD 
treatment can be further evaluated for druggability, blood brain 
barrier (BBB) penetration by applying several ‘rules of thumb’ 
that have emerged from studies [51-53] to give simple 
guidance concerning the molecular properties that favor brain 
permeation.  

IV. CONCLUSION 

This presented study has introduced a novel approach to 
identify possible drug candidates via phenotypical association 
discovery and pathway enrichment analysis. The presented 
case study has successfully demonstrated the capability of our 
approach being used for identifying drug repositioning 
candidates for AD. Evidence based phenotypical associations 
increase the success rate of searching for possible drug 
repositioning candidates by decreasing candidate searching 
space that is only associated with the interested phenotypical 
association. Integrating system biological information lowers 
the risk for repositioning existing chemicals or drugs as the 
candidates are extracted from the pathways. It is worthy to 
highlight that this approach can be extended to other interested 
disease areas driven by other existing phenotypic associations. 
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