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Abstract—Quality improvement (QI) requires systematic and 

continuous efforts to enhance healthcare services. A healthcare 

provider might wish to compare local statistics with those from 

other institutions in order to identify problems and develop 

intervention to improve the quality of care. However, the sharing 

of institution information may be deterred by institutional 

privacy as publicizing such statistics could lead to 

embarrassment and even financial damage. In this article, we 

propose a Privacy-preserving Cloud-assisted quality 

Improvement Service in healthcare (PRECISE), which aims at 

enabling cross-institution comparison of healthcare statistics 

while protecting privacy. The proposed framework relies on a set 

of state-of-the-art cryptographic protocols including 

homomorphic encryption and Yao’s garbled circuit schemes. By 

securely pooling data from different institutions, PRECISE can 

rank the encrypted statistics to facilitate QI among participating 

institutes. We conducted experiments using MIMIC II database 

and demonstrated the feasibility of the proposed PRECISE 

framework. 

Keywords—quality improvement;homomorphic encryption; 

garbled circuit;data privacy; cloud computing. 

I. INTRODUCTION 

Hospital quality is important to the reputation and financial 
sustainability of a hospital. Metrics such as infection rate and 
readmission rate reflect the quality of care. In order to improve 
the quality, it is necessary to compare local statistics with those 
from other hospitals to know what intervention needs to be 
prioritized. However, sharing of such statistics can be 
embarrassing and financially disadvantageous, which deters 
hospitals to exchange “sensitive” statistics. It would be 
beneficial if a mechanism allows hospital administrators 
compare these statistics to obtain a ranking without disclosing 
the underlying statistics. 

 
This is closely related to the famous Yao’s millionaire 

problem, where two millionaires want to know who is richer 

without disclosing their total asset to the other[1], [2]. The 
problem for comparing measurements related to hospital 
quality is challenging as we need to consider a multi-institution 
comparison scenario to protect intermediary information 
exchange.  

A. Motivating Example 

Imagine several hospitals, which are located at different 
locations, want to study morbidity related to the bloodstream 
infection (BSI) in Emergency Room (ER) and improve the 
quality of care. They would like to know the morbidity ranking 
in terms of BSI morbidity stratified by age, gender, staff 
training, vascular access care audits, etc. Such ranking can help 
hospitals gain insights to identify necessary intervention for 
improvement but it should not disclose sensitive information 
from individual hospitals. For example, Hospital A might find 
that the less frequent vascular access care leads to higher 
ranked BSI morbidity in the elder population, for which 
intervention can be developed to improve the quality. Our 
framework can support such comparison in a privacy-
preserving manner. Before we elaborate the details, let us 
review related methodology. 

B. Related Techniques 

Secure Multiparty Computation (SMC)[3]is one of the 
cryptographic techniques for securely aggregating information 
among different parties. However, SMC is not always practical 
as it requires inter-party (peer to peer) communication.  

Alternatively, data perturbation based methods[4]–[8] have 
been proposed, which try to generalize or add noise to the raw 
data in order to hide the sensitive information. Among existing 
strategies, differential privacy based methods[4], [6], [9]have 
received a lot of attention as the privacy definition provides the 
strongest privacy protection (without making any assumption 
on attackers’ background knowledge).However, the main 
drawback of perturbation based methods is that added noise 
may destroy the utility of the outcome (i.e., in our case, the 
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ranking orders).Order-preserving encryption [10]provides yet 
another workaround to conduct ranking operation on encrypted 
data, but it cannot support secure aggregation among 
distributed datasets, which is necessary for comparing local 
statistics with the global ones. 

To address the limitations of existing techniques, we 
propose a privacy-preserving cloud-assisted framework for 
securely aggregating information from distributed data sources 
as well as performing global ranking in cipher text. 

CLOUD:
aggregation and evaluate 

garbled circuit

 
 
 

CRYPTO SERVICE PROVIDER:
provide encryption service 

and garbled circuit

Yao s protocol

Results feedback

 

Fig. 1System overview of the proposed PRECISE framework, which includes 
M hospitals, a cloud service and a Crypto Service Provider (CSP).In the 

proposed framework, neither the cloud nor the CSP can eavesdrop sensitive 

information from any of the M hospitals. 

II. METHODOLOGY 

A. System Framework 

Fig. 1illustratesthe frame work of the proposed method, which 

includes 𝑀  hospitals, a cloud service, and a crypto service 

provider(CSP). The cloud service analyzes encrypted data from 

𝑀 different hospitals in a privacy-preserving manner, and 

answers aggregate queries. The CSP manages the public key 

(data encryption) and private key (data decryption), and it is the 

only entity capable of decrypting a cipher text. All parties in 

this study are assumed to be semi-honest, which means they 

follow the protocol honestly but may try to deduce additional 

information from the received messages during the protocol 

execution. To minimize privacy risk, the cloud service is 

restricted to only answer the rank information (e.g., which 

hospital has the largest morbidity for a given cohort)rather than 

providing the actual counts.  

The workflow of the proposed frame work is summarized 

as follows: first, the cloud gathers encrypted counts of different 

query criteria from each hospital using the homomorphic 

encryption algorithm and adds random masks to the encrypted 

count of each query so that the real counts cannot be revealed 

by the CSP. Next, a garbled circuit is designed based on the 

Yao’s protocol[1], by which the cloud (together with the 

CSP)can answer the ranking information using encrypted data. 

There maining of this section is organized as follows: we 

briefly present the relevant cryptographic tools used in our 

proposed protocol. Then, we will elaborate on the 

implementation details of the proposed protocol. 

Encrypted data A Encrypted data BData A

Answer

Data A

Answer

Data A Data B

(a) Traditional encryption methods

(b) Our proposed homomorphic encryption based method

Encrypted data A

 

Fig. 2 Comparison between traditional encryption and homomorphic 
encryption methods. 

B. Homomorphic Encryption 

Homomorphic encryption [11], [12] is a form of encryption 
where a specific algebraic operation performed on the plaintext 
is equivalent to another algebraic operation performed on the 
ciphertext, and when decrypted, matches the results of the same 
operation performed on the plaintext. Fig. 2illustrates the 
difference between homomorphic encryption and traditional 
encryption methods. In specific, there are three types of 
homomorphic encryption techniques[13]: (1) partially 
homomorphic encryption that is generally specialized in a 
single type of operations (e.g., either addition or multiplication) 
[14]–[16], (2) leveled homomorphic encryption that operates 
on both operations for a limited number of iterations and an 
increased computational complexity[17]. (3) fully 
homomorphic encryption that operations on both operations 
without limiting the number of iteration but it also results in the 
highest complexity[18]–[21].For a given task, it is important to 
select a proper homomorphic encryption scheme to strike the 
right tradeoff between arithmetical flexibility and 
computational complexity. The addition operation is the basic 
primitive of our frame work. We resort to the Paillier’s 
scheme[16], which is a partially homomorphic encryption 
techniques with homomorphic addition property, to conduct 
this operation. Let us denote by𝐸(𝑥1) and 𝐸(𝑥2)theencrypted 
cipher texts of two plaintexts 𝑥1  and 𝑥2 . In Paillier’s 
homomorphic scheme, the product of two cipher text s results 
in the encrypted version of the summation of both 
plaintexts(i.e., 𝐸(𝑥1) ∙ 𝐸(𝑥2) mod𝑛2 =  𝐸(𝑥1 + 𝑥2) mod 𝑛 , 
where ‘mod’ denotes the modular operation and 𝑛 = 𝑝𝑞 is the 
product of two large prime numbers 𝑝 and 𝑞.) 

C. 1-2 oblivious transfer (OT) protocol 

Oblivious transfer(short for 1-2 OT)protocol is a constant 
round communication protocol, which guarantees that Party A 
can obtain one of the two messages from Party B without 
letting Party B knows which message is actually selected. We 
will not go through the details of the OT protocol in this paper, 
But, readers can find more implementation details in[22]. The 
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OT protocol is one of the steps necessary to implement the 
following Yao’s protocol. 

D. Yao’s Protocol[1] 

The original Yao’s protocol supposes two parties, for 
example, Alice and Bob, plan to compute a function𝑓(𝑥, 𝑦), 
where 𝑥 is owned by Alice, and 𝑦 is owned by Bob. However, 
none of these parties would like to expose its input to the other 
party in evaluating the function 𝑓(𝑥, 𝑦) . To satisfy this 
requirement, Alice will first convert the function𝑓(𝑥, 𝑦) into a 
Boolean circuit, in which sever allogic gates will be 
specifically combined together to realize the given function. 
Here, each logic gate can perform a logical operation on one or 
more binary inputs and produces a single binary output. Fig. 
3depicts an example of a half adder circuit to implement the 
function 𝑓ℎ𝑎(𝑥, 𝑦) = 𝑥 + 𝑦  with 𝑥, 𝑦 ∈ {0, 1} , wherethe half 
adder circuit includes an XOR (i.e., exclusive OR) gate and an 
AND gate with two inputs and two outputs. Moreover, each 
logic gate has three wires corresponding to two binary inputs 
and one binary output, where each wire will be assigned a 
uniqueindex 𝑤𝑖  with 𝑖 = {1, 2, … , 𝑊}  and 𝑊  is the total 
number of wires in the Boolean circuit (e.g., 𝑊 = 6 inFig. 3). 
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Fig. 3 An example of a half adder circuit in implementing function fha(x, y) =
x + y with x, y ∈ {0, 1}, which includes an XOR gate and an AND gate. The 

half adder has two single binary inputs x and y and two outputs, i.e., sum (S) 

and carry (C), where the decimal output can be represented as fha(x, y) =
2C + S. Each logic gate (e.g., XOR or AND gate) has three wires, which 

correspond to two binary inputs (e.g., W1 and W2 in the XOR gate) and one 

binary output (e.g., W3 in the XOR gate). The truth tables of the half adder 
circuit, XOR and AND gates have been shown as references. 
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Fig. 4.  An example of an encrypted XOR gate, where w1 and w2 are the input 

wires andw3 is the output wire. For each wire wii = {1, 2, 3}, two secret keys 

kwi

0  and kwi

1  will be selected to represent the 0 and 1, respectively. Then, a 

stream cipher based encryption scheme[23] is used to generate an encrypted 

truth table of the XOR gate with encrypted output and check code. Here, the 

check code can be utilized to validate the garbled output, which will be 
explained later. 

Next, Alice will randomly generate two secret keys (a.k.a., 

garbled values) 𝑘𝑤𝑖
0  and 𝑘𝑤𝑖

1  to represent 0 and 1, respectively, 

for each wire 𝑤𝑖  with 𝑖 = {1, 2, … , 𝑊} . For example, Alice 

needs to generate 6 keys for the XOR gate, where the input 
keys can be used to encrypt the output keys as shown in the 
encrypted truth table in Fig. 4. A stream cipher based scheme is 
applied to encrypt the output keys as well as a check code. The 
check code can be used to validate the output keys, which will 
be explained later. Besides, other encryption methods (e.g., 
AES [24]) can also be employed to enhance the security in 
practice. Then, Alice randomly permutes the encrypted truth 
table and sends the garbled table as well as the check code to 
Bob as shown in Fig. 5 (a). Besides, Alice will also send the 
output keys to Bob. 

Let’s suppose the actual inputs from Alice and Bob are 0 
and 1, respectively. As shown in Fig. 5 (b), Bob will obtain his 
garbled input 𝑘𝑤2

1  from Alice using the OT protocol [22], by 

which Alice cannot learn what is the input from Bob. 
Furthermore, Alice will also send her garbled input (i.e., 
𝐺𝐼(0) = 𝑘𝑤1

0 = 1010 in Fig. 5 (b)) to Bob, where Bob only 

learns 𝑘𝑤1
∗ = 1010 but cannot figure out if the ‘*’ corresponds 

to 0 or 1. Once Bob obtains both garbled inputs 𝑘𝑤1
∗  and 𝑘𝑤2

1 , 

he can decrypt the garbled truth table and match the check code 
provided by Alice to obtain a uniquely valid output of the gate, 
where the output is still a garbled value. Therefore, Bob cannot 
find out what the true value of the output is. As gates in a 
circuit are connected through wires, Bob can continue 
evaluating all gates in the circuit one by one, where the garbled 
output from previous gate can be used as the garbled input for 
the current gate. In case of reaching the end of the circuit, Bob 
can decrypt the output based on the secret keys obtained from 
Alice. Fig. 5 (c)shows an example of evaluating a circuit with a 
single XOR gate using Yao’s protocol. 
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Fig. 5 An example of Yao's protocol using an XOR gate.This example is 

provided for illustrative purposes only, wherethe security protection cannot be 
achieved with this circuit. But, it can serve as the basic building blockof a 

more complicated circuit.See Remark I for more discussions. 

 

Remark I: When evaluating the circuit, Bob needs to keep 

the encrypted intermediate outputs of each gate as secrets, so 

that Alice cannot infer Bob’s true inputs. Moreover, the 

security of a circuit is based on the assumption that neither 

Alicen or Bob cannot derive the other’s input based on the final 

output of a function and his/her own input .It is clear that many 

functions may be unable to satisfy the above assumption. For 

example, given the output of a single XOR gate and one input 

as depicted in Fig. 5 (c), one can easily infer the other input. It 

is worth mentioning that the example in Fig. 5 is provided for 

illustrative purposes only, which can serve as a basic building 

block for building a large garbled circuit. But users cannot 

achieve security protection with a single garbled XOR gate as 

shown in Fig. 5.In this study, we will focus on the design of a 

function for comparing the ranks of numerical inputs, where 

one cannot easily infer the original input based on the output. 

A. Method Details 

The general procedures of the proposed algorithm are 
summarized in Algorithm 1. 

Lines 1-3:Each hospital 𝐻𝑖  with 𝑖 = 1,2, … , 𝑀, where 𝑀 is 
total number of hospitals, will evaluate the same local function 
𝑓(𝐷𝐻𝑖

) on its local private data 𝐷𝐻𝑖
.Since none of the hospitals 

would like to expose their local sensitive results to others, each 
hospital 𝐻𝑖 first encrypt its local output 𝑓(𝐷𝐻𝑖

)  as 

𝐸𝑛𝑐𝐻𝑀𝐸(𝑓(𝐷𝐻𝑖
))  by usinga public homomorphic encryption 

key 𝑘𝑝𝑢𝑏obtained from the CSP. Then, these encrypted inputs 

will be sent to the cloud for global function evaluation. 

Lines 4-5:The cloud will evaluate the global function 

𝑔𝑓𝑢𝑛 (𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻1
)) , 𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻2

)) , . . . , 𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻𝑀
)))

over encrypted inputs. In the proposed framework, the basic 
cryptographic primitives that allow certain operations to be 
evaluated over encrypted data, include Paillier’s homomorphic 
encryption [16], 1-2 OT [22] and Yao’s garbled circuit[1]. 

In this step, the Paillier’s homomorphic encryption scheme 
is used to achieve secure addition and multiplication operations 
over encrypted data. 

1) Secure addition among homomorphic encrypted results 
using Paillier’s homomorphic addition property.  

𝑔𝑠𝑢𝑚 (𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻1
)) , 𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻2

)) , … , 𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻𝑀
))) 

= 𝐸𝑛𝑐𝐻𝑀𝐸(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 )(1) 

2) Secure multiplication between a constant and encrypted 
value using Paillier’s homomorphic multiplication property. 

𝑔𝑚𝑢𝑙 (𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻𝑖
)) , 𝐶) = 𝐸𝑛𝑐𝐻𝑀𝐸 (𝐶𝑓(𝐷𝐻𝑖

))(2)       

Lines 6-9: The cloud adds random masks on encrypted 
values based on the homomorphic addition property as follows 

𝐸𝑛𝑐𝐻𝑀𝐸 (𝑓(𝐷𝐻𝑖
)) + 𝐸𝑛𝑐𝐻𝑀𝐸(𝜇𝐻𝑖

1 ) = 𝐸𝑛𝑐𝐻𝑀𝐸(𝑓(𝐷𝐻𝑖
) +

𝜇𝐻𝑖

1 ), 

(3) 

𝐸𝑛𝑐𝐻𝑀𝐸 (𝐶𝑓(𝐷𝐻𝑖
)) + 𝐸𝑛𝑐𝐻𝑀𝐸(𝜇𝐻𝑖

2 ) 

= 𝐸𝑛𝑐𝐻𝑀𝐸(𝐶𝑓(𝐷𝐻𝑖
) + 𝜇𝐻𝑖

2 ),                               (4) 

𝐸𝑛𝑐𝐻𝑀𝐸 (∑ 𝑓(𝐷𝐻𝑖
)

𝑀

𝑖=1

) + 𝐸𝑛𝑐𝐻𝑀𝐸(𝜇𝑠𝑢𝑚) 

= 𝐸𝑛𝑐𝐻𝑀𝐸(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 + 𝜇𝑠𝑢𝑚), (5) 
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Where𝐶 is a constant,𝜇𝐻𝑖

1 , 𝜇𝐻𝑖

2  and 𝜇𝑠𝑢𝑚 are random masks 

generated by the cloud, 𝐻𝑖  is the index of each hospital with 
𝑖 = 1, 2, … , 𝑀 for total 𝑀 hospitals. Then, the cloud sends the 
encrypted masked data to the CSP, where these masked values 
will be decrypted using the CSP’s private key. The CSP 
converts the decrypted masked values into garbled values as 
illustrated in the Yao’s protocol, which can be denoted 

as  𝐺𝑉(𝑓(𝐷𝐻𝑖
) + 𝜇𝐻𝑖

1 ) , 𝐺𝑉(𝐶𝑓(𝐷𝐻𝑖
) + 𝜇𝐻𝑖

2 ), and 

𝐺𝑉 (∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 + 𝜇𝑠𝑢𝑚). The garbled values will be used as 

inputs to evaluate the garbled circuit in the next few steps. 
Moreover, the cloud needs to request the garbled value of each 
random mask from CSP through OT protocol, such 

as 𝐺𝑉(𝜇𝐻𝑖

1 ),𝐺𝑉(𝜇𝐻𝑖

2 ) and 𝐺𝑉(𝜇𝑠𝑢𝑚). The OT protocol ensures 

that the CSP cannot learn the underlying random mask 
generated by the cloud. Thus, the CSP cannot infer the masked 
values even after the decryption in line 8. 

Lines 10-13:The cloud subtracts the garbled random mask 
values from the corresponding garbled masked values within 
the garbled circuit, by which the cloud can recover the garbled 

values of the original values as 𝐺𝑉 (𝑓(𝐷𝐻𝑖
)) =  𝐺𝑉(𝑓(𝐷𝐻𝑖

) +

𝜇𝐻𝑖

1 ) − 𝐺𝑉(𝜇𝐻𝑖

1 ) , 𝐺𝑉 (𝐶𝑓(𝐷𝐻𝑖
)) = 𝐺𝑉(𝐶𝑓(𝐷𝐻𝑖

) + 𝜇𝐻𝑖

2 ) −

𝐺𝑉(𝜇𝐻𝑖

2 ),  and  𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 ) = 𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 +

𝜇𝑠𝑢𝑚) − 𝐺𝑉(𝜇𝑠𝑢𝑚). The use of garbled circuit protect the 

original value from being disclosed to the cloud during the 
above evaluation. Then, the cloud continues evaluating a 

ranking garbled circuit with inputs 𝐺𝑉 (𝑓(𝐷𝐻𝑖
)), 𝑖 = 1,2, … , 𝑀, 

where the outputs are the ranking information of the underlying 

value  𝑓(𝐷𝐻𝑖
) .In addition, the cloud will also evaluate a 

comparison garbled circuit with pair wise inputs  

 𝐺𝑉 (𝑀𝑓(𝐷𝐻𝑖
))  and  𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖

)𝑀
𝑖=1 ) , where the output is 

𝐺𝑉(𝑀𝑓(𝐷𝐻𝑖
) > ∑ 𝑓(𝐷𝐻𝑖

)𝑀
𝑖=1 ). This comparison is equivalent 

to assess whether an input from a hospital is larger than the 
mean of these from all hospitals. 

Lines 14-15: The cloud will match the garbled output with 
garbled truth table provided by the CSP to identify a valid 
output (see Fig. 5 (c) as an example). Finally, the decrypted 
results (e.g., ranking information) will be sent back to each 
hospital. 

Remark II: The cloud should keep all the intermediate 
garbled values as secrets, so that the CSP cannot infer any 
input. 

In summary, both the cloud and the CSP will be involved in 
the secure computation on, but none of them knows these 
underlying values under the proposed framework. In the next 
section, we will evaluate the proposed framework based on a 
real clinical dataset. 

 

III. EXPERIMENT 

In this section, we evaluate the proposed framework with 
MIMIC II Clinical Dataset[25]. The goal of the proposed 
framework is to perform secure data aggregation and data 

comparison among different hospitals in a cloud assisted 
environment, by which each hospital is able to retrieve its 
relative ranking under certain criteria in a privacy-preserving 
manner. 

We have extracted a dataset with 924 death records in 

intensive care unit (ICU) from the MIMIC II Clinical Database, 

where all the attributes used in the dataset have been listed in 

TABLE. The dataset includes6 categorical attributes and 1 

numerical attributes. 

TABLE I: MIMIC II CLINICAL DATASET 

Attribute Data Type 

Algorithm 1 : Proposed procedures 

1:  Local private data evaluation at 𝑴 different Hospitals 

2:   Each hospital 𝐻𝑖 evaluates the same local function 𝑓(𝐷𝐻𝑖
) over 

its local private data 𝐷𝐻𝑖
, where 𝑖 = 1, 2, … , 𝑀 

3:    Each hospital 𝐻𝑖 encrypts the result as  𝐸𝑛𝑐𝐻𝑀𝐸(𝑓(𝐷𝐻𝑖
)) based 

on Paillier’s homomorphic encryption [16]. Then, the encrypted 

results will be sent to cloud service provider as inputs for further 

computation.  

4: Secure data aggregation: 

5: The cloud securely aggregates the inputs from each hospital 

based on the homomorphic addition property as depicted in (1) 

with the output  𝐸𝑛𝑐𝐻𝑀𝐸(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 ) . Then, the cloud can 

perform secure multiplication between a constant and the 

encrypted aggregation output as shown in (2) 

6: Secure conversion between homomorphic encrypted data and 

Garbled data 

7: The cloud adds random masks on each homomorphic encrypted 

value based on (3), (4) and (5), such as  𝐸𝑛𝑐𝐻𝑀𝐸(𝑓(𝐷𝐻𝑖
) +

𝜇𝐻𝑖

1 ), 𝐸𝑛𝑐𝐻𝑀𝐸(𝐶𝑓(𝐷𝐻𝑖
) + 𝜇𝐻𝑖

2 ), and 𝐸𝑛𝑐𝐻𝑀𝐸(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 +

𝜇𝑠𝑢𝑚). Then, the cloud sends the masked data to the CSP. 

8: The CSP decrypts these masked values with its private key and 

converts the masked values into garbled masked values as 

illustrated in the Yao’s protocol, such as  𝐺𝑉(𝑓(𝐷𝐻𝑖
) +

𝜇𝐻𝑖

1 ), 𝐺𝑉(𝐶𝑓(𝐷𝐻𝑖
) + 𝜇𝐻𝑖

2 ), and 𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 + 𝜇𝑠𝑢𝑚). 

9:  The cloud requests the garbled random mask values from CSP 

through OT protocol, such as  𝐺𝑉(𝜇𝐻𝑖

1 ), 𝐺𝑉(𝜇𝐻𝑖

2 ), and 𝐺𝑉(𝜇𝑠𝑢𝑚). 

10: Garbled circuit evaluation: 

11: The cloud subtracts the garbled random mask valuesfrom the 

corresponding garbled masked values within the garbled circuit, 

by which the cloud can recover the garbled values of the original 

values as  𝐺𝑉 (𝑓(𝐷𝐻𝑖
)) , 𝐺𝑉 (𝐶𝑓(𝐷𝐻𝑖

)) and 𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖
)𝑀

𝑖=1 ).  

12: The cloud continues evaluating a ranking garbled circuit with 

inputs  𝐺𝑉 (𝑓(𝐷𝐻𝑖
)) ,  𝑖 = 1,2, … , 𝑀 , where the outputs are the 

ranking information of the underlying value 𝑓(𝐷𝐻𝑖
). 

13: The cloud will also evaluate a comparison garbled circuit with 

pair wise inputs   𝐺𝑉 (𝑀𝑓(𝐷𝐻𝑖
)) and  𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖

)𝑀
𝑖=1 ), where 

the output is whether  𝐺𝑉 (𝑀𝑓(𝐷𝐻𝑖
))> 𝐺𝑉(∑ 𝑓(𝐷𝐻𝑖

)𝑀
𝑖=1 ). This 

comparison is equivalent to assess whether an input from a 

hospital is larger than the mean of these from all hospitals. 

14: Results feedback 

15: The cloud will match the garbled output with garbled truth 

tableprovided by the CSP to identify a valid output (see Fig. 5 (c) 

as an example). Finally, the decrypted results (e.g., ranking 

information) will be sent back toeach hospital. 
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Sex 1: Female; 2: Male 

Age of 

Death 
Range from 21 to 101 

Marital 

Status 

1: Divorced; 2: Married; 3:Separated; 4: Single; 5: 

Unknown; 6:Widowed 

Ethnicity 

1:Asian; 2:Black/African American; 3:Hispanic or 

Latino; 4:Hispanci/ Latino-Puerto Rican; 5:Multi Race 

Ethnicity; 6:Other; 7:Partient Declined to Answer; 

8:Unable to obtain; 9:Unknown; 10:White; 11:White-

Brazilian; 

Overall 

Payer 

Group 

1:Auto Liability; 2:Free Care; 3: Medicaid; 4:Medicare; 

5:Medicare private; 6:Other; 7:Private; 8:Self-pay; 

Religion 

1:7th Day Adventist; 2:Baptist; 3:Buddhist; 4:Catholtc; 

5:Christian Scientist; 6:Episcopalian; 7:Greek Orthodox; 

8:Jehovah’s Witness; 9:Jewish; 10:Methodist; 

11:Muslim; 12:Not Specified; 13:Other; 14:Protestant 

Quaker; 15:Romanian East; 16:Unobtainable; 

Admission 

Type 
1:Elective; 2:Emergency; 3:Urgent; 

For our experiments, we suppose there are 𝑀 = 4 hospitals 

such as 𝐻1, 𝐻2, 𝐻3, 𝐻4.Then, we equally split the dataset into 

four sub datasets for the 4 hospitals. For our experiment, each 

plaintext has 32bits. For homomorphic encryption, a 128-bit 

encryption key is used in our experiment. For the garbled 

circuit, each key is 64bits. 

Suppose each hospital would like to compare its ICU 

mortality against other 3 hospitals under different age groups. 

In addition, each hospital may be interested in whether or not 

its ICU mortality is above the average level among all 

4hospitals. Each hospital first computed its local mortality 

under different age groups, and encrypted these local 

mortalities with homomorphic encryption, which was sent later 

to the cloud for secure global comparison. The cloud and the 

CSP will cooperate together to rank each age group’s mortality 

in each hospital under the proposed framework. As 

aforementioned, each hospital also wants to know whether or 

not its mortality is above the average level. To compute the 

average value, a division circuit under Yao’s protocol needs to 

be implemented, which may significantly increase the circuit 

complexity. As each hospital is only interested in the 

comparison, we can reformate the comparison as follows 

if𝑀 × 𝑓𝑚𝑜𝑟(𝐷𝐻𝑖
) ≥  ∑ 𝑓𝑚𝑜𝑟(𝐷𝐻𝑖

),𝑀
𝑗=1 (6) 

Where M =  4 is the number of hospitals, 𝐷𝑖  is the dataset at 

hospital 𝐻𝑖  and 𝑓𝑚𝑜𝑟(𝐷𝐻𝑖
) is the local function for calculate the 

local motility. The multiplication and aggregation can be 

achieved by homomorphic addition and multiplication 

operations. The results from the garbled circuit are listed in 

TABLE. In TABLE, the rank of each age group corresponds to 

the ascend order of mortality, where ‘1’ and ‘4’refer to the 

lowest and the highest mortalities, respectively. The mortality 

of each hospital that is above the average among all hospitals, 

is shaded in gray in TABLE. 

TABLE II: RANKING OUTPUTS USING THE PROPOSED 
FRAMEWORK, WHERE ‘1’ AND ‘4’ REFERS TO THE LOWEST AND 

THE HIGHEST MORTALITIES, RESPECTIVELY, WHERE THE 

MORTALITY THAT IS HIGHER THE AVERAGE AMONG ALL 
HOSPITALS, IS HIGHLIGHTED IN GRAY. 

Age H1 H2 H3 H4 

20~29 4 1 3 2 

30~39 3 4 1 2 

40~49 1 2 4 3 

50~59 1 4 2 3 

60~69 1 2 4 3 

70~79 4 1 3 2 

>80 3 4 1 2 

 Where M =  4 is the number of hospitals, 𝐷𝑖  is the dataset 

at hospital 𝐻𝑖  and 𝑓𝑚𝑜𝑟(𝐷𝐻𝑖
) is the local function for calculate 

the local motility. The multiplication and aggregation can be 

achieved by homomorphic addition and multiplication 

operations. The results from the garbled circuit are listed in 

TABLE. In TABLE, the rank of each age group corresponds to 

the ascend order of mortality, where ‘1’ and ‘4’refer to the 

lowest and the highest mortalities, respectively. The mortality 

of each hospital that is above the average among all hospitals, 

is shaded in gray in TABLE. 

TABLE II depicts that the hospitals can obtain useful information 

for improving their service quality. For example, H1finds out 

that the mortality of its young population (age between 20 and 

39) is the highest among all hospitals, thus they may need to 

pay more attention about its young population. This experiment 

demonstrates a practical use case of the proposed method. In 

practice, hospitals can conduct more advanced inquiries using 

the proposed framework. For example, they are able to 

compare the mortalities of a sub-population. The sub-

population can be defined by a criterion like “age is between 50 

and 59, sex is male and marriage status is widowed”, which 

can be achieved by modifying the local function in each 

hospital, whereas the cloud and CSP can follow the same 

protocols unchanged. Therefore, the proposed framework is 

flexible to handle more complicated real-world scenarios. 

Remark III: For this experiment, we need to design 

comparison garbled circuit for ranking operation. We designed 

the comparison circuit as shown in Fig(a), which consists of 

several full adder circuits(Fig. 6 (b)) and one two’s 

complement circuit (Fig. 6 (a)). In Fig. 6(a), inputs are 𝐴 and 𝐵 

with 𝐿  bits, which can represent an integer ranging from 0 

to2𝐿 − 1, and the output denoted by𝑆𝐿 is the most significant 

bit of𝐴 − 𝐵, as 

SL = {
0, 𝑖𝑓 𝐴 ≥ 𝐵  
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.                                 (7) 

The comparison circuit can be used to rank the count of 

records in a query (e.g., a specific combination of attributes). 
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Fig. 6(a) Acomparison circuit, where the comparison is achieved througha full 

adder circuit as shown in (b) with C0,out = 0. 

In this section, we used the secure aggregation and 

comparison operations as examples to illustrate the proposed 

framework. In practice, the cloud and CSP can securely 

compute many different functions by combining both 

homomorphic encryption and garbled circuits. We measured 

the execution time of some key cryptographic operations in a 

workstation with an Intel 3.2 GHz CPU, where all the results 

are averaged over1000 single operations. The execution time 

of each basic cryptographic primitive has been profiled and 

shown in TABLEIII. 

TABLEIII: THE EXECUTION TIME OF EACH BASIC 

CRYPTOGRAPHIC PRIMITIVE USED IN THE PROPOSED 

FRAMEWORK 

Operation Time (milliseconds) 

Homomorphic Encryption 3.1 

Homomorphic Decryption 4.7 

Homomorphic Add 1.7 

Homomorphic Multiplication 0.5 

OT Protocol 575.0 

Comparison Garbled Circuit Evaluation 15.0 

IV. LIMITATIONS AND DISCUSSION 

The proposed system has several limitations that need the 

further investigation. One limitation is that the current 

framework only supports secure aggregation operations 

followed by secure rank operations. However, the proposed 

framework demonstrated the feasibility of combining 

homomorphic encryption and garbled circuit based crypto 

techniques for supporting QI studies. In theory, garbled circuit 

based protocol[1] can be used to securely evaluated arbitrary 

functions with the cost of specific circuit design. We will 

leave the circuit design of more advanced functions in our 

future work. 

V. CONCLUSION 

We introduced the PRECISE framework to facilitate 
privacy-preserving distributed quality metric comparison. The 
proposed framework supports secure ranking operation on 
aggregated data from distributed data sources in a cloud-
assisted environment. We plan to develop more advanced 
system such as linear regression system using the garbled 

circuit protocol and homomorphic encryption primitives in 
order to expand the usability of the proposed framework. 
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